Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Ta thấy:
\(\frac{(a-b)^3}{(\sqrt{a}-\sqrt{b})^3}-b\sqrt{b}+2a\sqrt{a}=\frac{(\sqrt{a}-\sqrt{b})^3(\sqrt{a}+\sqrt{b})^3}{(\sqrt{a}-\sqrt{b})^3}-b\sqrt{b}+2a\sqrt{a}\)
\(=(\sqrt{a}+\sqrt{b})^3-b\sqrt{b}+2a\sqrt{a}=a\sqrt{a}+b\sqrt{b}+3\sqrt{ab}(\sqrt{a}+\sqrt{b})-b\sqrt{b}+2a\sqrt{a}\)
\(=3a\sqrt{a}+3\sqrt{ab}(\sqrt{a}+\sqrt{b})=3\sqrt{a}(a+\sqrt{ab}+b)\)
$a\sqrt{a}-b\sqrt{b}=(\sqrt{a}-\sqrt{b})(a+\sqrt{ab}+b)$
\(\frac{\frac{(a-b)^3}{(\sqrt{a}-\sqrt{b})^3}-b\sqrt{b}+2a\sqrt{a}}{a\sqrt{a}-b\sqrt{b}}=\frac{3\sqrt{a}}{\sqrt{a}-\sqrt{b}}(1)\)
\(\frac{3a+3\sqrt{ab}}{b-a}=\frac{3\sqrt{a}(\sqrt{a}+\sqrt{b})}{(\sqrt{b}-\sqrt{a})(\sqrt{b}+\sqrt{a})}=\frac{-3\sqrt{a}}{\sqrt{a}-\sqrt{b}}(2)\)
Từ $(1);(2)$ ta có đpcm.
Câu 2:
Điều kiện đã cho tương đương với:
$\frac{a-b}{a(a+b)}+\frac{a+b}{a(a-b)}=\frac{3a-b}{(a-b)(a+b)}$
$\Leftrightarrow \frac{(a-b)^2}{a(a+b)(a-b)}+\frac{(a+b)^2}{a(a-b)(a+b)}=\frac{a(3a-b)}{a(a-b)(a+b)}$
$\Leftrightarrow (a-b)^2+(a+b)^2=a(3a-b)$
$\Leftrightarrow 2a^2+2b^2=3a^2-ab$
$\Leftrightarrow a^2-ab-2b^2=0$
$\Leftrightarrow (a+b)(a-2b)=0$
$\Leftrightarrow a=-b$ hoặc $a=2b$
Nếu $a=-b$ thì $|a|=|b|$ (trái giả thiết). Do đó $a=2b$
Khi đó:
$P=\frac{(2b)^3+2(2b)^2.b+3b^3}{2(2b)^3+2b.b^2+b^3}=\frac{19b^3}{19b^3}=1$
a) 9x2 - 36
=(3x)2-62
=(3x-6)(3x+6)
=4(x-3)(x+3)
b) 2x3y-4x2y2+2xy3
=2xy(x2-2xy+y2)
=2xy(x-y)2
c) ab - b2-a+b
=ab-a-b2+b
=(ab-a)-(b2-b)
=a(b-1)-b(b-1)
=(b-1)(a-b)
P/s đùng để ý đến câu trả lời của mình
xét (2a+3b)(2b+3a)=\(4ab+6b^2+9ab+6a^2=6\left(a^2+b^2\right)+13ab\)
mặ khác ta có \(13ab⋮13\)\(a^2+b^2⋮13\left(gt\right)\Rightarrow6\left(a^2+b^2\right)⋮13\)\(\Rightarrow\left(2a+3b\right)\left(2b+3a\right)⋮13\)
\(\Rightarrow\)2a+3b hoặc 2b+3a chia hết cho 13
\(x^2+x+13=y^2\Leftrightarrow4x^2+4x+52=4y^2\)
\(\Leftrightarrow\left(2x+1\right)^2+51=\left(2y\right)^2\)
\(\Leftrightarrow\left(2y\right)^2-\left(2x+1\right)^2=51\)
\(\Leftrightarrow\left(2y+2x+1\right)\left(2y-2x-1\right)=51\)
\(\Leftrightarrow...\)
Đặt \(\left\{{}\begin{matrix}\sqrt{2x^2+16x+18}=a\\\sqrt{x^2-1}=b\\2x+4=c\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=c\\a^2+2b^2=c^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b=c-a\\2b^2=\left(c-a\right)\left(c+a\right)\end{matrix}\right.\)
\(\Leftrightarrow2b^2=b\left(c+a\right)\Leftrightarrow b\left(c+a-2b\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}b=0\Leftrightarrow x^2-1=0\Rightarrow x=...\\c+a=2b\left(1\right)\end{matrix}\right.\)
Kết hợp (1) với pt ban đầu ta được: \(\left\{{}\begin{matrix}b=c-a\\c+a=2b\end{matrix}\right.\)
\(\Rightarrow c+a=2\left(c-a\right)\Rightarrow c=3a\)
\(\Rightarrow3\sqrt{2x^2+16x+18}=2x+4\left(x\ge-2\right)\)
\(\Leftrightarrow9\left(2x^2+16x+18\right)=\left(2x+4\right)^2\)
\(\Leftrightarrow...\)
\(\left\{{}\begin{matrix}x^2+1=y\left(x+y\right)\\\left(x^2+1\right)\left(x+y-2\right)+y=0\end{matrix}\right.\)
\(\Rightarrow y\left(x+y\right)\left(x+y-2\right)+y=0\)
\(\Leftrightarrow y\left[\left(x+y\right)\left(x+y-2\right)+1\right]=0\)
\(\Leftrightarrow y\left[\left(x+y\right)^2-2\left(x+y\right)+1\right]=0\)
\(\Leftrightarrow y\left(x+y-1\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y=0\left(ktm\right)\\x+y-1=0\end{matrix}\right.\)
\(\Rightarrow y=1-x\)
Thế vào pt đầu:
\(x^2-\left(1-x\right)+1=0\Leftrightarrow...\)
Bài 1. Áp dụng BĐT : ( x - y)2 ≥ 0 ∀xy
⇒ x2 + y2 ≥ 2xy
⇔ \(\dfrac{x^2}{xy}+\dfrac{y^2}{xy}\) ≥ 2
⇔ \(\dfrac{x}{y}+\dfrac{y}{x}\) ≥ 2
⇒ 3( \(\dfrac{x}{y}+\dfrac{y}{x}\)) ≥ 6 ( 1)
CMTT : \(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}\) ≥ 2
⇒ \(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}+4\) ≥ \(6\) ( 2)
Từ ( 1 ; 2) ⇒ \(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}+4\) ≥ 3( \(\dfrac{x}{y}+\dfrac{y}{x}\))
Đẳng thức xảy ra khi : x = y
Bài 4. Do : a ≥ 4 ; b ≥ 4 ⇒ ab ≥ 16 ( * ) ; a + b ≥ 8 ( ** )
Áp dụng BĐT Cauchy , ta có : a2 + b2 ≥ 2ab = 2.16 = 32 ( *** )
Từ ( * ; *** ) ⇒ a2 + b2 + ab ≥ 16 + 32 = 48 ( 1 )
Từ ( ** ) ⇒ 6( a + b) ≥ 48 ( 2)
Từ ( 1 ; 2 ) ⇒a2 + b2 + ab ≥ 6( a + b)
Đẳng thức xảy ra khi a = b = 4
Bài 2:a)\(\dfrac{1}{a}+\dfrac{1}{b}-\dfrac{4}{a+b}=ab+b^2+a^2+ab-4ab=a^2-2ab+b^2=\left(a-b\right)^2\ge0\)
=>\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)
Dấu = xảy ra khi (a-b)2=0<=>a=b
b)Áp dụng BĐT ở câu a:\(\dfrac{1}{b^2}+\dfrac{1}{c^2}\ge\dfrac{4}{b^2+c^2}\)
Dấu = xảy ra khi b2=c2
Áp dụng cosi \(\dfrac{b^2+c^2}{a^2}+\dfrac{a^2}{b^2+c^2}\ge2\)
Dấu = xảy ra khi b2+c2=a2
\(a^2\ge b^2+c^2\Rightarrow\dfrac{a^2}{b^2+c^2}\ge1\)
Giờ ta phân tích P:\(P=\dfrac{1}{a^2}\left(b^2+c^2\right)+a^2\left(\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)\ge\dfrac{b^2+c^2}{a^2}+a^2\cdot\dfrac{4}{b^2+c^2}=\dfrac{b^2+c^2}{a^2}+\dfrac{a^2}{b^2+c^2}+\dfrac{3a^2}{b^2+c^2}\ge2+3=2+3=5\)
=>min P=5 đạt được khi \(\left\{{}\begin{matrix}b^2=c^2\\a^2=b^2+c^2\end{matrix}\right.\)<=>a2=2b2=2c2