Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left|x+\frac{4}{15}\right|-\left|-3,75\right|=-\left|-2,15\right|\)
=> \(\left|x+\frac{4}{15}\right|-3,75=-2,15\)
=> \(\left|x+\frac{4}{15}\right|=\frac{8}{5}\)
+) \(x+\frac{4}{15}=\frac{8}{5}\)
=> \(x=\frac{8}{5}-\frac{4}{15}=\frac{24}{15}-\frac{4}{15}=\frac{20}{15}=\frac{4}{3}\)
+) \(x+\frac{4}{15}=-\frac{8}{5}\)
=> \(x=-\frac{8}{5}-\frac{4}{15}\)
=> \(x=-\frac{24}{15}-\frac{4}{15}=-\frac{28}{15}\)
\(|x+\frac{4}{15}|-|-3,75|=-|-2,15|\)
\(|x+\frac{4}{15}|-3,75=-2,15\)
\(|x+\frac{4}{15}|=-2,15+3,75\)
\(|x+\frac{4}{15}|=1,6\)
Ta có : \(|x+\frac{4}{15}|\ge0\forall x\)
\(\Rightarrow|x+\frac{4}{15}|=x+\frac{4}{15}\)
\(\Rightarrow x+\frac{4}{15}=1,6\)
\(x+\frac{4}{15}=\frac{8}{5}\)
\(x=\frac{8}{5}-\frac{4}{15}\)
\(x=\frac{4}{3}\)
a, \(A=\left|x-1\right|+\left|x-2\right|=\left|x-1\right|+\left|2-x\right|\ge\left|x-1+2-x\right|=1\)
Dấu "=" xảy ra khi \(\left(x-1\right)\left(2-x\right)\ge0\Leftrightarrow1\le x\le2\)
Vậy GTNN của A = 1 khi \(1\le x\le2\)
b, \(B=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|=\left(\left|x-1\right|+\left|x-3\right|\right)+\left|x-2\right|\)
Ta có: \(\left|x-1\right|+\left|x-3\right|=\left|x-1\right|+\left|3-x\right|\ge\left|x-1+3-x\right|=2\)
Mà \(\left|x-2\right|\ge0\)
\(\Rightarrow B=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|\ge2+0=2\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x-1\right)\left(3-x\right)\ge0\\\left|x-2\right|\ge0\end{cases}\Rightarrow x=2}\)
Vậy GTNN của B = 2 khi x = 2
c, \(C=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+\left|x-4\right|\)
\(=\left(\left|x-1\right|+\left|3-x\right|\right)+\left(\left|x-2\right|+\left|4-x\right|\right)\)
\(\ge\left|x-1+3-x\right|+\left|x-2+4-x\right|\)
\(\ge2+2=4\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x-1\right)\left(3-x\right)\ge0\\\left(x-2\right)\left(4-x\right)\ge0\end{cases}\Rightarrow\hept{\begin{cases}1\le x\le3\\2\le x\le4\end{cases}\Rightarrow}2\le x\le}3\)
Vậy GTNN của C = 4 khi \(2\le x\le3\)
\(x\ge-\frac{1}{2}\Rightarrow3x-2x-1=0\Rightarrow x=1\)
\(x< \frac{-1}{2}\Rightarrow3x+2x+1\Rightarrow x=-\frac{1}{5}\left(loai\right)\)
\(3x-|2x-1|=2\Leftrightarrow|2x-1|=2-3x\)
\(\Rightarrow-2x+1=2-3x\)hoặc \(-2x+1=3x-2\)
\(\Rightarrow1x+1=2\)hoặc \(-5x+1=-2\)
\(\Rightarrow x=1\)hoặc\(x=\frac{5}{3}\)
\(\left|x-y\right|+\left|y+\frac{9}{25}\right|=0\)
Ta có : \(\hept{\begin{cases}\left|x-y\right|\ge0\\\left|y+\frac{9}{25}\right|\ge0\end{cases}}\Rightarrow\left|x-y\right|+\left|y+\frac{9}{25}\right|\ge0\forall x,y\)
Dấu " = " xảy ra <=> \(\hept{\begin{cases}x-y=0\\y+\frac{9}{25}=0\end{cases}}\Rightarrow\hept{\begin{cases}x-y=0\\y=-\frac{9}{25}\end{cases}\Rightarrow}x=y=-\frac{9}{25}\)
Vậy giá trị của biểu thức = 0 khi x = y = -9/25