K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2019

II. Tự luận.

Giải bài 35 trang 123 Toán 7 Tập 1 | Giải bài tập Toán 7

a) Vì \(Ot\) là tia phân giác của \(\widehat{xOy}\left(gt\right)\)

\(H\in Ot\left(gt\right)\)

=> \(OH\) là tia phân giác của \(\widehat{xOy}.\)

Hay \(OH\) là tia phân giác của \(\widehat{AOB}.\)

Xét 2 \(\Delta\) vuông \(AOH\)\(BOH\) có:

\(\widehat{AHO}=\widehat{BHO}=90^0\left(gt\right)\)

Cạnh OH chung

\(\widehat{AOH}=\widehat{BOH}\) (vì \(OH\) là tia phân giác của \(\widehat{AOB}\))

=> \(\Delta AOH=\Delta BOH\) (cạnh huyền - góc nhọn).

b) Theo câu a) ta có \(\Delta AOH=\Delta BOH.\)

=> \(HA=HB\) (2 cạnh tương ứng).

c) Ta có: \(\widehat{AOH}=\widehat{BOH}\) (vì \(OH\) là tia phân giác của \(\widehat{AOB}\)).

=> \(\widehat{AOC}=\widehat{BOC}.\)

Theo câu a) ta có \(\Delta AOH=\Delta BOH.\)

=> \(AO=BO\) (2 cạnh tương ứng).

Xét 2 \(\Delta\) \(ACO\)\(BCO\) có:

\(AO=BO\left(cmt\right)\)

\(\widehat{AOC}=\widehat{BOC}\left(cmt\right)\)

Cạnh CO chung

=> \(\Delta ACO=\Delta BCO\left(c-g-c\right)\)

=> \(\widehat{ACO}=\widehat{BCO}\) (2 góc tương ứng).

=> \(CO\) là tia phân giác của \(\widehat{ACB}\left(đpcm\right).\)

Chúc bạn học tốt!

27 tháng 12 2019

TRẮC NGHIỆM:

1)B.8cm

2)C.Góc A=Góc D

3)C.AB=EF

~Học tốt~

Bài 25: Cho tg ABC có B=C.Tia phân giác của góc A cắt BC tại D. Chứng minh rằng:a) tg ADB = tg ADCb) AB = ACBài 26: Cho góc xOy khác góc bẹt. Ot là phân giác của góc đó. Qua điểm H thuộc tia Ot,kẻ đường vuông góc với Ot, nó cắt Ox và Oy theo thứ tự là A và B.a) Chứng minh rằng OA = OB;b) Lấy điểm C thuộc tia Ot, chứng minh rằng CA = CB và OAC=OBCBài 27. Cho góc nhọn xOy. Trên tia Ox lấy hai điểm A, C. Trên tia Oy...
Đọc tiếp

Bài 25: Cho tg ABC có B=C.Tia phân giác của góc A cắt BC tại D. Chứng minh rằng:
a) tg ADB = tg ADC
b) AB = AC
Bài 26: Cho góc xOy khác góc bẹt. Ot là phân giác của góc đó. Qua điểm H thuộc tia Ot,
kẻ đường vuông góc với Ot, nó cắt Ox và Oy theo thứ tự là A và B.
a) Chứng minh rằng OA = OB;
b) Lấy điểm C thuộc tia Ot, chứng minh rằng CA = CB và OAC=OBC
Bài 27. Cho góc nhọn xOy. Trên tia Ox lấy hai điểm A, C. Trên tia Oy lấy hai điểm B,D
sao cho OA = OB, AC = BD.
a) Chứng minh: AD = BC.
b) Gọi E là giao điểm AD và BC. Chứng minh: tg EAC = tg EBD
c) Chứng minh: OE là phân giác của góc xOy, OE vuông góc CD
Bài 28 : Cho tam giác ABC với AB = AC. Lấy I là trung điểm BC. Trên tia BC lấy
điểm N, trên tia CB lấy điểm M sao cho CN=BM.
a) Chứng minh tg ABI= tg ACI và AI là tia pg của góc BAC
b)Chứng minh AM=AN.
c) Chứng minh AI vuông góc BC.

1
26 tháng 2 2020

1)A) vì \(\Delta ABC\)CÓ \(\widehat{B}=\widehat{C}\)

\(\Rightarrow\Delta ABC\)CÂN TẠI A

\(\Rightarrow AB=AC\)

XÉT \(\Delta ADB\)\(\Delta ADC\)

\(AB=AC\left(CMT\right)\)

\(\widehat{ADB}=\widehat{ADC}\left(GT\right)\)

\(AD\)LÀ CẠNH CHUNG

\(\Rightarrow\Delta ADB=\Delta ADC\left(C-G-C\right)\)

B)VÌ\(\Delta ABC\)CÓ \(\widehat{B}=\widehat{C}\)

\(\Rightarrow\Delta ABC\)CÂN TẠI A

=> AB=AC

Hộ mik với ạ mik cần gấp cảm ơn ạBài 1: Cho ∆MNP có MN =8cm, MP = 15cm, NP = 17cm.a) Chứng minh ∆MNP vuôngb) Kẻ tia phân giác NI của góc MNP (I MP). Từ I kẻ IK vuông góc với NP.Chứng minh ∆MNI = ∆KIc) Tia IK cắt tia NM tại Q. Chứng minh KP = MQd) Từ M kẻ tia Mx//IK cắt NI ở H. Chứng minh ∆MIH cânBài 2: Cho ∆ABC cân tại A có AB = AC = 5cm, BC= 6cm. Kẻ AD vuông góc vớiBC tại D. Kẻ DE vuông góc với AB tại E, DF...
Đọc tiếp

Hộ mik với ạ mik cần gấp cảm ơn ạ

Bài 1: Cho ∆MNP có MN =8cm, MP = 15cm, NP = 17cm.
a) Chứng minh ∆MNP vuông
b) Kẻ tia phân giác NI của góc MNP (I MP). Từ I kẻ IK vuông góc với NP.
Chứng minh ∆MNI = ∆KI
c) Tia IK cắt tia NM tại Q. Chứng minh KP = MQ
d) Từ M kẻ tia Mx//IK cắt NI ở H. Chứng minh ∆MIH cân
Bài 2: Cho ∆ABC cân tại A có AB = AC = 5cm, BC= 6cm. Kẻ AD vuông góc với
BC tại D. Kẻ DE vuông góc với AB tại E, DF vuông góc với AC tại F.
a) Chứng minh ∆ADB = ∆ADC
b) Tính độ dài AC
c) Giả sử ̂ = 740

. Tính góc ABC

d) Chững minh DE = DF
e) Chứng minh AE = AF
f) Chứng minh DE //BC
Bài 3: Cho ∆MNP có MN = MP = 13cm, NP = 10cm. Kẻ MD vuông góc với NP
tại D.
a) Chứng minh: ND = PD và ̂ ̂
b) Tính độ dài MD
c) Kẻ DA vuông góc MN tại I và IA = ID; kẻ DB vuông góc MP tại H và DH =
BH. Chứng minh rằng AM = MD
d) Chứng minh ∆MAB cân
e) Chứng minh AN vuông góc AM
f) Gọi giao điểm của AB và MN là E, giao điểm của AB và MP là F. Chứng
minh DM là tia phân giác của góc EDF
Bài 4: Cho ∆ABC vuông tại A có AB = 3cm, AC = 4cm.
a) Tính độ dài BC
b) Trên tia đối của tia AC lấy điểm D sao cho AD = AB. ∆ABD có dạng đặc
biệt gì? Vì sao?
c) Lấy trên tia đối của tia AB điểm E sao cho AE = AC .chứng minh DE = BC
Bài 5: cho ∆ABC cân tại A, có góc C= 300

. Vẽ phân giác AD ( D BC). Vẽ DE

vuông góc với AB, DF vuông góc AC.
a) Chứng minh ∆DEF đều
b) Chứng minh ∆BED = ∆CFD
c) Kẻ BM//AD ( M AC) chứng minh ∆ABM đều

0
11 tháng 11 2016

A B C H O x y t 1 2

a)

xét \(\Delta AHO\)\(\Delta BHO\) có:

OH(chung)

\(\widehat{AHO}=\widehat{BHO}=90^o\)

\(\widehat{O_1}=\widehat{O_2}\left(gt\right)\)

\(\Rightarrow\Delta AHO=\Delta BHO\left(g.c.g\right)\)

=> OA=OB

b)

xét \(\Delta ACO\)\(\Delta BCO\) có:

OA=OB(theo câu a)

\(\widehat{O_1}=\widehat{O_2}\)(gt)

OC(chung)

=>\(\Delta ACO=\Delta ABO\left(c.g.c\right)\)

=>\(\begin{cases}\widehat{OAC}=\widehat{OBC}\\CA=CB\end{cases}\)

29 tháng 11 2018

Thật là giỏi quá bn nhoc quay pha 🙀🙀🙀🙀

4 tháng 12 2015

tự vẽ hình

a) Xét \(\Delta\)HAO vuông tại H  và \(\Delta\)HBO vuông tại H

 có : OH chung ; gócHOA =gócHOB ( Ot : phân giác)

=> \(\Delta\)HAO =\(\Delta\)HBO ( cạnh góc vuông - góc nhọn)

=> OA =OB ( cạnh tương ứng)

b)  Xét \(\Delta\)CAO và \(\Delta\)CBO 

có OA =OB ( cm trên)

gócCOA =góc COB

OC chung

=>\(\Delta\)CAO =\(\Delta\)CBO ( c-g-c)

=> góc OAC = góc OBC ( góc tương ứng)

 

4 tháng 12 2015

làm bài này hay không tùy nha

1. Cho tia Ot là tia phân giác của góc xOy nhọn. Trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA = OB. Trên tia Oy lấy điểm H sao cho OH > OAa) Chứng minh: Tam giác OAH = tam giác OBHb) Tia AH cắt Oy tại M, tia BH catứ tia Ox tại N. Chứng minh tam giác OAM = tam giác OBNc) Chứng minh AB vuông góc với OHd) Gọi K là trung điểm của MN. Chứng minh: K thuộc tia Ot2. Cho góc nhọn xAy. Trên tia Ax lấy B. Trên tia Ay lấy C...
Đọc tiếp

1. Cho tia Ot là tia phân giác của góc xOy nhọn. Trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA = OB. Trên tia Oy lấy điểm H sao cho OH > OA

a) Chứng minh: Tam giác OAH = tam giác OBH

b) Tia AH cắt Oy tại M, tia BH catứ tia Ox tại N. Chứng minh tam giác OAM = tam giác OBN

c) Chứng minh AB vuông góc với OH

d) Gọi K là trung điểm của MN. Chứng minh: K thuộc tia Ot

2. Cho góc nhọn xAy. Trên tia Ax lấy B. Trên tia Ay lấy C sao cho AB - AC. Kẻ BH vuông góc AC (H thuộc AC) và CK vuông góc AB (K thuộc AB)

a) Chứng minh góc ABH = góc ACK

b) BH cắt CK tại E. Chứng minh AE vuông góc BC

c) Tam giác ABC phải thoả mãn điều kiện gì để E là điểm cách đều 3 cạnh ?

3. Cho tam giác ABC vuông tại A. Gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA

a) Chứng minh: Tam giác AMB = tam giác DMC

b) Chứng minh: AC = BD và AC //BD

c) Chứng minh: Tam giác ABC = tam giác DCB. Tính số đo góc BDC

4. Cho tam giác ABC vuông tại A có góc ABC = 60 độ

a) Tính số đo góc ACB

b) Trên tia đối của tia AC lấy điểm D sao cho AD = AC. Chứng minh tam giác ABD = tam giác ABC

c) Vẽ tia Bx là tia phân giác của góc ABC. Qua C vẽ đường thẳng vuông góc với AC, cắt tia Bx tại E. Chứng minh AC = 1/2 BE

2
1 tháng 8 2016

Võ Hùng Nam hảo hảo a~

Bài 3: 

a: Xét ΔAMB và ΔDMC có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)

MB=MC

Do đó: ΔAMB=ΔDMC

b: Xét tứ giác ABDC có 

M là trung điểm của BC

M là trung điểm của AD
Do đó: ABDC là hình bình hành

Suy ra:AC//BD và AC=BD

c: Xét ΔABC và ΔDCB có 

AB=DC

\(\widehat{ABC}=\widehat{DCB}\)

BC chung

Do đó: ΔABC=ΔDCB

Suy ra: \(\widehat{BAC}=\widehat{CDB}=90^0\)

21 tháng 9 2017

a) ∆AOH và  ∆BOH có:ˆAOHAOH^=ˆBOHBOH^(gt)

OH là cạnh chung

 ∆AOH =∆BOH( g.c.g)

Vậy OA=OB.

b)  ∆AOC và ∆BOC có:

OA=OB(cmt)

ˆOACOAC^=ˆOABOAB^(gt)

OC cạnh chung.

Nên  ∆AOC= ∆BOC(g.c.g)

Suy ra: CA=CB(cạnh tương ứng)

ˆOACOAC^= ˆOBCOBC^( góc tương ứng).



Xem thêm tại: http://loigiaihay.com/bai-35-trang-123-sach-giao-khoa-toan-7-tap-1-c42a5064.html#ixzz48jIcx

22 tháng 12 2017

a) Xét ΔAOH∆AOH và  ΔBOH∆BOH có:

+) ˆAOH=ˆBOHAOH^=BOH^ (vì OtOt là phân giác)

+) OHOH là cạnh chung

+) ˆAHO=ˆBHO(=900)AHO^=BHO^(=900)

 Suy ra ΔAOH=ΔBOH∆AOH=∆BOH ( g.c.g)

Suy ra OA=OBOA=OB (hai cạnh tương ứng).

b) Xét  ΔAOC∆AOC và ΔBOC∆BOC có:

+) OA=OBOA=OB (cmt)

+) ˆAOC=ˆBOCAOC^=BOC^  (gt)

+) OCOC cạnh chung.

Suy ra  ΔAOC=ΔBOC∆AOC=∆BOC (c.g.c)

Suy ra: CA=CBCA=CB ( hai cạnh tương ứng)

ˆOAC=ˆOBCOAC^=OBC^  ( hai góc tương ứng).

16 tháng 7 2017

a) ∆AOH và  ∆BOH có:=(gt)

OH là cạnh chung

 ∆AOH =∆BOH( g.c.g)

Vậy OA=OB.

b)  ∆AOC và ∆BOC có:

OA=OB(cmt)

=(gt)

OC cạnh chung.

Nên  ∆AOC= ∆BOC(g.c.g)

Suy ra: CA=CB(cạnh tương ứng)

( góc tương ứng).