Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)A) vì \(\Delta ABC\)CÓ \(\widehat{B}=\widehat{C}\)
\(\Rightarrow\Delta ABC\)CÂN TẠI A
\(\Rightarrow AB=AC\)
XÉT \(\Delta ADB\)VÀ\(\Delta ADC\)CÓ
\(AB=AC\left(CMT\right)\)
\(\widehat{ADB}=\widehat{ADC}\left(GT\right)\)
\(AD\)LÀ CẠNH CHUNG
\(\Rightarrow\Delta ADB=\Delta ADC\left(C-G-C\right)\)
B)VÌ\(\Delta ABC\)CÓ \(\widehat{B}=\widehat{C}\)
\(\Rightarrow\Delta ABC\)CÂN TẠI A
=> AB=AC
A B C H O x y t 1 2
a)
xét \(\Delta AHO\) và \(\Delta BHO\) có:
OH(chung)
\(\widehat{AHO}=\widehat{BHO}=90^o\)
\(\widehat{O_1}=\widehat{O_2}\left(gt\right)\)
\(\Rightarrow\Delta AHO=\Delta BHO\left(g.c.g\right)\)
=> OA=OB
b)
xét \(\Delta ACO\) và \(\Delta BCO\) có:
OA=OB(theo câu a)
\(\widehat{O_1}=\widehat{O_2}\)(gt)
OC(chung)
=>\(\Delta ACO=\Delta ABO\left(c.g.c\right)\)
=>\(\begin{cases}\widehat{OAC}=\widehat{OBC}\\CA=CB\end{cases}\)
tự vẽ hình
a) Xét \(\Delta\)HAO vuông tại H và \(\Delta\)HBO vuông tại H
có : OH chung ; gócHOA =gócHOB ( Ot : phân giác)
=> \(\Delta\)HAO =\(\Delta\)HBO ( cạnh góc vuông - góc nhọn)
=> OA =OB ( cạnh tương ứng)
b) Xét \(\Delta\)CAO và \(\Delta\)CBO
có OA =OB ( cm trên)
gócCOA =góc COB
OC chung
=>\(\Delta\)CAO =\(\Delta\)CBO ( c-g-c)
=> góc OAC = góc OBC ( góc tương ứng)
Bài 3:
a: Xét ΔAMB và ΔDMC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)
MB=MC
Do đó: ΔAMB=ΔDMC
b: Xét tứ giác ABDC có
M là trung điểm của BC
M là trung điểm của AD
Do đó: ABDC là hình bình hành
Suy ra:AC//BD và AC=BD
c: Xét ΔABC và ΔDCB có
AB=DC
\(\widehat{ABC}=\widehat{DCB}\)
BC chung
Do đó: ΔABC=ΔDCB
Suy ra: \(\widehat{BAC}=\widehat{CDB}=90^0\)
a) ∆AOH và ∆BOH có:ˆAOHAOH^=ˆBOHBOH^(gt)
OH là cạnh chung
∆AOH =∆BOH( g.c.g)
Vậy OA=OB.
b) ∆AOC và ∆BOC có:
OA=OB(cmt)
ˆOACOAC^=ˆOABOAB^(gt)
OC cạnh chung.
Nên ∆AOC= ∆BOC(g.c.g)
Suy ra: CA=CB(cạnh tương ứng)
ˆOACOAC^= ˆOBCOBC^( góc tương ứng).
Xem thêm tại: http://loigiaihay.com/bai-35-trang-123-sach-giao-khoa-toan-7-tap-1-c42a5064.html#ixzz48jIcx
a) Xét ΔAOH∆AOH và ΔBOH∆BOH có:
+) ˆAOH=ˆBOHAOH^=BOH^ (vì OtOt là phân giác)
+) OHOH là cạnh chung
+) ˆAHO=ˆBHO(=900)AHO^=BHO^(=900)
Suy ra ΔAOH=ΔBOH∆AOH=∆BOH ( g.c.g)
Suy ra OA=OBOA=OB (hai cạnh tương ứng).
b) Xét ΔAOC∆AOC và ΔBOC∆BOC có:
+) OA=OBOA=OB (cmt)
+) ˆAOC=ˆBOCAOC^=BOC^ (gt)
+) OCOC cạnh chung.
Suy ra ΔAOC=ΔBOC∆AOC=∆BOC (c.g.c)
Suy ra: CA=CBCA=CB ( hai cạnh tương ứng)
ˆOAC=ˆOBCOAC^=OBC^ ( hai góc tương ứng).
a) ∆AOH và ∆BOH có:=(gt)
OH là cạnh chung
∆AOH =∆BOH( g.c.g)
Vậy OA=OB.
b) ∆AOC và ∆BOC có:
OA=OB(cmt)
=(gt)
OC cạnh chung.
Nên ∆AOC= ∆BOC(g.c.g)
Suy ra: CA=CB(cạnh tương ứng)
= ( góc tương ứng).
II. Tự luận.
a) Vì \(Ot\) là tia phân giác của \(\widehat{xOy}\left(gt\right)\)
Mà \(H\in Ot\left(gt\right)\)
=> \(OH\) là tia phân giác của \(\widehat{xOy}.\)
Hay \(OH\) là tia phân giác của \(\widehat{AOB}.\)
Xét 2 \(\Delta\) vuông \(AOH\) và \(BOH\) có:
\(\widehat{AHO}=\widehat{BHO}=90^0\left(gt\right)\)
Cạnh OH chung
\(\widehat{AOH}=\widehat{BOH}\) (vì \(OH\) là tia phân giác của \(\widehat{AOB}\))
=> \(\Delta AOH=\Delta BOH\) (cạnh huyền - góc nhọn).
b) Theo câu a) ta có \(\Delta AOH=\Delta BOH.\)
=> \(HA=HB\) (2 cạnh tương ứng).
c) Ta có: \(\widehat{AOH}=\widehat{BOH}\) (vì \(OH\) là tia phân giác của \(\widehat{AOB}\)).
=> \(\widehat{AOC}=\widehat{BOC}.\)
Theo câu a) ta có \(\Delta AOH=\Delta BOH.\)
=> \(AO=BO\) (2 cạnh tương ứng).
Xét 2 \(\Delta\) \(ACO\) và \(BCO\) có:
\(AO=BO\left(cmt\right)\)
\(\widehat{AOC}=\widehat{BOC}\left(cmt\right)\)
Cạnh CO chung
=> \(\Delta ACO=\Delta BCO\left(c-g-c\right)\)
=> \(\widehat{ACO}=\widehat{BCO}\) (2 góc tương ứng).
=> \(CO\) là tia phân giác của \(\widehat{ACB}\left(đpcm\right).\)
Chúc bạn học tốt!
TRẮC NGHIỆM:
1)B.8cm
2)C.Góc A=Góc D
3)C.AB=EF
~Học tốt~