K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 7 2021

I.

Ta có:

1 + 2 = 3 (Số liền trước 4)

1 + 2 + 4 = 7 (Số liền trước 8)

1 + 2 + 4 + 8 = 15 (Số liền trước 16)

<=> 1 + 2 + 4 + 8 + 16 + ... + 4096 sẽ bằng số liền trước 8192 => Số liền trước 8192 là 8191:

=> 8191 + 8192 = 16383

3 tháng 7 2021

II.

a)

Áp dụng theo công thức:

Số số hạng:

\(\left(n-1\right):1+1=n\) (số hạng)

Tổng:

\(\left(n+1\right)\frac{n}{2}\)

b) 

Số số hạng:

\(\frac{2n-2}{2}+1=\frac{2\left(n-1\right)}{2}+1=n\)

Tổng:

\(\frac{\left(2n+2\right)n}{2}=\left(n+1\right)n\)

c) 

Số số hạng:

\(\left(2005-1\right):3+1=669\) (số hạng)

Tổng:

\(\left(2005+1\right).669:2=671007\)

15 tháng 8 2023

a) \(1+2+3+4+...+n\)

\(=\left(n+1\right)\left[\left(n-1\right):1+1\right]:2\)

\(=\left(n+1\right)\left(n-1+1\right):2\)

\(=n\left(n+1\right):2\)

\(=\dfrac{n\left(n+1\right)}{2}\)

b) \(2+4+6+..+2n\)

\(=\left(2n+2\right)\left[\left(2n-2\right):2+1\right]:2\)

\(=2\left(n+1\right)\left[2\left(n-1\right):2+1\right]:2\)

\(=\left(n+1\right)\left(n-1+1\right)\)

\(=n\left(n+1\right)\)

c) \(1+3+5+...+\left(2n+1\right)\)

\(=\left[\left(2n+1\right)+1\right]\left\{\left[\left(2n-1\right)-1\right]:2+1\right\}:2\)

\(=\left(2n+1+1\right)\left[\left(2n-1-1\right):2+1\right]:2\)

\(=\left(2n+2\right)\left[\left(2n-2\right):2+1\right]:2\)

\(=2\left(n+1\right)\left[2\left(n-1\right):2+1\right]:2\)

\(=\left(n+1\right)\left(n-1+1\right)\)

\(=n\left(n+1\right)\)

15 tháng 8 2023

d) \(1+4+7+10+...+2005\)

\(=\left(2005+1\right)\left[\left(2005-1\right):3+1\right]:2\)

\(=2006\cdot\left(2004:3+1\right):2\)

\(=2006\cdot\left(668+1\right):2\)

\(=1003\cdot669\)

\(=671007\)

e) \(2+5+8+...+2006\)

\(=\left(2006+2\right)\left[\left(2006-2\right):3+1\right]:2\)

\(=2008\cdot\left(2004:3+1\right):2\)

\(=1004\cdot\left(668+1\right)\)

\(=1004\cdot669\)

\(=671676\)

g) \(1+5+9+...+2001\)

\(=\left(2001+1\right)\left[\left(2001-1\right):4+1\right]:2\)

\(=2002\cdot\left(2000:4+1\right):2\)

\(=1001\cdot\left(500+1\right)\)

\(=1001\cdot501\)

\(=501501\)

23 tháng 9 2017

bn tính theo công thức :( số đầu + số cuối) . số số hạng :2

23 tháng 9 2017

SSH=(số cuối-số đầu)*khoảng cách+1

Tổng=(số đầu+số cuối)*SSH/2

7 tháng 6 2021

Trả khác j câu t vừ hỏi

áp dụng tính tổng các dãy số

CT: tính số hạng : (số cuối - số đầu) : khoảng cách giữa hai số + 1

      tính tổng : (số đầu + số cuối) . số số hạng : 2

Còn trường hợp bài a,b,c thì gọi số số hạng là k(chỉ la ví dụ thôi bn thích lấy chữ gì cũng được nhưng đừng trùng chữ trong bài) rồi áp dụng tính tổng

19 tháng 10 2021

1,Tính các tổng sau. a) 1 + 2+ 3+ 4 +....+ n

b) 2+4+6+8+...+2.n

c) 1+3+5+7+...+(2.n +1)

d) 1+4+7+10+..+2005

e) 2+5+8+...+2006

f) 1+5+9+..+2001

2,Tính nhanh : A = 1 +2 + 4 + 8 +16 + ...+ 8192 3,

a, Tính tổng các số lẻ có 2 chữ số.

b,Tính tổng các số chẵn có 2 chữ số.

4,a,Tổng 1 +2+3+....+n có bao nhiêu số hạng để kết quả tổng bằng 190

b,Có hay không số tự nhiên n sao cho 1+2+3+...+n =2004

c,Chứng minh rằng: [(1+2+3+...+n)-7]không chia hết cho 10

17 tháng 6 2018

Cái tên.. àk mà thôi -_- 

\(a)\) \(1+2+3+4+...+n=\frac{n\left(n+1\right)}{2}\)

\(b)\) \(2+4+6+8+...+2n=\left(\frac{2n-2}{2}+1\right)\left(2n+2\right)=\frac{2n\left(2n+2\right)}{2}=2n\left(n+1\right)\)

\(c)\) \(1+3+5+...+\left(2n+1\right)=\left(\frac{2n+1-1}{2}+1\right)\left(2n+1+1\right)=\frac{\left(2n+2\right)\left(2n+2\right)}{2}=\frac{\left(2n+2\right)^2}{2}\)

\(d)\) \(1+4+7+10+...+2005=\left(\frac{2005-1}{3}+1\right)\left(2005+1\right)=1342014\)

\(e)\) \(2+5+...+2006=\left(\frac{2006-2}{3}+1\right)\left(2006+2\right)=1343352\)

\(g)\) \(1+5+9+...+2001=\left(\frac{2001-1}{4}+1\right)\left(2001+1\right)=1003002\)

Chúc bạn học tốt ~ 

17 tháng 6 2018

Cự giải nha bn