Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(\(3+\dfrac{x}{3-x}+\dfrac{2x}{3+x}-\dfrac{4x^2-3x-9}{x^2-9}\) ):\(\left(\dfrac{2}{3-x}-\dfrac{x-1}{3x-x^2}\right)\)\(=\left(\dfrac{3x^2-27}{\left(x-3\right)\left(x+3\right)}+\dfrac{-x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}+\dfrac{2x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}-\dfrac{4x^2-3x-9}{\left(x-3\right)\left(x+3\right)}\right)\)\(:\left(\dfrac{2x}{x\left(3-x\right)}-\dfrac{x-1}{x\left(3-x\right)}\right)\)
\(=\dfrac{3x^2-27-x^2-3x+2x^2-6x-4x^2+3x+9}{\left(x-3\right)\left(x+3\right)}:\dfrac{x+1}{x\left(3-x\right)}\)
\(=\dfrac{-6x-18}{\left(x-3\right)\left(x+3\right)}:\dfrac{x+1}{x\left(3-x\right)}\) \(=\dfrac{-6\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}:\dfrac{x+1}{x\left(3-x\right)}\)
\(=\dfrac{6}{3-x}.\dfrac{x\left(x-3\right)}{x+1}\) \(=\dfrac{6x}{x+1}\)
Bài 2:
a: Ta có: \(A=\left(x+1\right)^3+\left(x-1\right)^3\)
\(=x^3+3x^2+3x+1+x^3-3x^2+3x-1\)
\(=2x^3+6x\)
b: Ta có: \(B=\left(x-3\right)^3-\left(x+3\right)\left(x^2-3x+9\right)+\left(3x-1\right)\left(3x+1\right)\)
\(=x^3-9x^2+27x-27-x^3-27+9x^2-1\)
\(=27x-55\)
a, \(\left(x-3\right)\left(x^2+3x+9\right)-x\left(x-3\right)\left(x+3\right)\)
\(=x^3-27-x\left(x^2-9\right)=x^3-27-x^3+9x\)
\(=9x-27=9\left(x-3\right)\)
b, \(\left(x+5\right)\left(x^2-5x+25\right)-\left(x+3\right)^3+\left(x-2\right)\left(x^2+2x+4\right)-\left(x-1\right)^3\)
\(=x^3+125-\left(x^3+9x^2+27x+27\right)+x^3-8-\left(x^3-3x^2+3x-1\right)\)
\(=2x^3+117-x^3-9x^2-27x-27-x^3+3x^2-3x+1\)
\(=-6x^2-30x+91\)
Chúc bạn học tốt!!!
1:
a: \(\left(2x-5\right)^2-4x\left(x+3\right)\)
\(=4x^2-20x+25-4x^2-12x\)
=-32x+25
b: \(\left(x-2\right)^3-6\left(x+4\right)\left(x-4\right)-\left(x-2\right)\left(x^2+2x+4\right)\)
\(=x^3-6x^2+12x-8-\left(x^3-8\right)-6\left(x^2-16\right)\)
\(=-6x^2+12x-6x^2+96=-12x^2+12x+96\)
c: \(\left(x-1\right)^2-2\left(x-1\right)\left(x+2\right)+\left(x+2\right)^2+5\left(2x-3\right)\)
\(=\left(x-1-x-2\right)^2+5\left(2x-3\right)\)
\(=\left(-3\right)^2+5\left(2x-3\right)\)
\(=9+10x-15=10x-6\)
2:
a: \(\left(2-3x\right)^2-5x\left(x-4\right)+4\left(x-1\right)\)
\(=9x^2-12x+4-5x^2+20x+4x-4\)
\(=4x^2+12x\)
b: \(\left(3-x\right)\left(x^2+3x+9\right)+\left(x-3\right)^3\)
\(=27-x^3+x^3-9x^2+27x-27\)
\(=-9x^2+27x\)
c: \(\left(x-4\right)^2\left(x+4\right)-\left(x-4\right)\left(x+4\right)^2+3\left(x^2-16\right)\)
\(=\left(x-4\right)\left(x+4\right)\left(x-4-x-4\right)+3\left(x^2-16\right)\)
\(=\left(x^2-16\right)\left(-8\right)+3\left(x^2-16\right)\)
\(=-5\left(x^2-16\right)=-5x^2+80\)
a, \(A=\left(-5x+4\right)\left(3x-2\right)+\left(-2x+3\right)\left(x-2\right)\)
\(=-15x^2+10x+12x-8=-15x^2+22x-8\)
Thay x = -2 vào biểu thức ta có : \(-15\left(-2\right)^2+22\left(-2\right)-8\)
\(=-15.4-44-8=-112\)
b, \(B=\left(x-9\right)\left(2x+3\right)-2\left(x+7\right)\left(x-5\right)\)
\(=2x^2+3x-18x-27=2x^2-15x-27\)
Thay x = -1/2 vào biểu thức ta có : \(2\left(-\frac{1}{2}\right)^2-15\left(-\frac{1}{2}\right)-27\)
\(=2.\frac{1}{4}+\frac{15}{2}-27=\frac{11}{2}+\frac{15}{2}+27=40\)
Bài làm:
a) \(A=\left(-5x+4\right)\left(3x-2\right)+\left(-2x+3\right)\left(x-2\right)\)
\(A=-15x^2+22x-8-2x^2+7x-6\)
\(A=-17x^2+29x-14\)
Thay x = -2 vào ta được:
\(A=-17.\left(-2\right)^2+29.\left(-2\right)-14\)
\(A=-68-58-14\)
\(A=-140\)
b) \(B=\left(x-9\right)\left(2x+3\right)-2\left(x+7\right)\left(x-5\right)\)
\(B=2x^2-15x-27-2\left(x^2+2x-35\right)\)
\(B=2x^2-15x-27-2x^2-4x+70\)
\(B=-19x+43\)
Thay x = -1/2 vào B ta được:
\(B=-19.\left(-\frac{1}{2}\right)+43=\frac{19}{2}+43=\frac{105}{2}\)
a, `(x-3)(x^2+3x+9)-(x^2-1)(9x+27)`
`=x^3-3^3-(9x^3+27x^2-9x-27)`
`=x^3-3^3-9x^3-27x^2+9x+27`
`=-8x^3-27x^2+9x`
b, `(x-2)(x^2+2x+4)-x(x-3)(x+3)`
`=x^3-2^3-x(x^2-9)`
`=x^3-8-x^3+9x`
`=9x-8`
a) Ta có: \(\left(x-3\right)\left(x^2+3x+9\right)-\left(x^2-1\right)\left(9x+27\right)\)
\(=x^3-27-\left(9x^3+27x^2-9x-27\right)\)
\(=x^3-27-9x^3-27x^2+9x+27\)
\(=-8x^3-27x^2+9x\)
b) Ta có: \(\left(x-2\right)\left(x^2+2x+4\right)-x\left(x-3\right)\left(x+3\right)\)
\(=x^3-8-x\left(x^2-9\right)\)
\(=x^3-8-x^3+9x\)
\(=9x-8\)
\(\left(x^2+3\right)\left(x^4-3x^2+9\right)-\left(x+3\right)^3\)
\(=x^6-3x^4+9x^2+3x^4-9x^2+27-x^3-6x^2-9x-3x^2-18x-27\)
\(=x^6+\left(-3x^4+3x^4\right)+\left(9x^2-9x^2-6x^2-3x^2\right)+\left(27-27\right)-x^3+\left(-9x-18x\right)\)
\(=x^6-6x^2-3x^2-x^3-27x\)
\(=x^6+\left(-6x^2-3x^2\right)-x^3-27x\)
\(=x^6-9x^2-x^3-27x\)
\(i,=\left(x-3\right)\left(x+3\right)^2-\left(x-3\right)\left(x^2+3x+9\right)\\ =\left(x-3\right)\left(x^2+6x+9-x^2-3x-9\right)\\ =3x\left(x-3\right)=3x^2-9x\\ ii,=x^3-8-25-x^3=-33\)
ii: Ta có: \(\left(x-2\right)\left(x^2+2x+4\right)-\left(x^3+25\right)\)
\(=x^3-8-x^3-25\)
=-33