Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Chu kì của hàm là: 2pi/160pi=1/80
b: Thời gian giữa hai lần tim đập là T=1/80
Số nhịp tim mỗi phút là 1/T=80(nhịp)
c: -1<=sin(160pi*t)<=1
=>-25<=25*sin(160*pi*t)<=25
=>90<=P(t)<=140
=>Chỉ số huyết áp là 140/90
=>Cao hơn người bình thường
a) Chu kỳ của hàm số \(p\left( t \right)\) là \(T = \frac{{2\pi }}{{160\pi }} = \frac{1}{{80}}\)
b) Thời gian giữa hai lần tim đập là \(T = \frac{1}{{80}}\) (phút)
Số nhịp tim mỗi phút là: \(\frac{1}{{\frac{1}{{80}}}} = 80\) (nhịp)
c) Ta có: \( - 1 \le sin\;\left( {160\pi t} \right)\; \le 1,\;\;\forall t \in R\)
\( \Leftrightarrow - 25 \le 25sin\;\left( {160\pi t} \right)\; \le 25,\;\forall t \in R\;\)
\( \Leftrightarrow 115 - 25 \le 115 + 25sin\;\left( {160\pi t} \right)\; \le 115 + 25,\;\forall t \in R\)
\( \Leftrightarrow 90 \le p\left( t \right) \le 140,\;\forall t \in R\)
Do đó, chỉ số huyết áp của người này là 140/90 và chỉ số huyết áp của người này cao hơn mức bình thường.
\(\begin{array}{l} - 1 \le sin\frac{\pi }{{12}}(t - 9)\; \le 1\\ \Leftrightarrow - 3 \le 3sin\frac{\pi }{{12}}(t - 9)\; \le 3\\ \Leftrightarrow - 26 \le 29 + 3sin\frac{\pi }{{12}}(t - 9)\; \le 32\\ \Leftrightarrow - 26 \le h(t) \le 32\end{array}\)
Vâỵ nhiệt độ thấp nhất trong ngày là 26°C khi:
\(\begin{array}{l}29 + 3sin\frac{\pi }{{12}}(t - 9) = 26\\ \Leftrightarrow sin\frac{\pi }{{12}}(t - 9) = - 1\\ \Leftrightarrow \frac{\pi }{{12}}(t - 9) = - \frac{\pi }{2} + k2\pi \\ \Leftrightarrow t = 3 + 24k,k \in \mathbb{Z}.\end{array}\)
Do t là thời gian trong ngày tính bằng giờ nên \(0 \le t \le 24\). Suy ra: \(k = 0 \Rightarrow t = 3\).
Vì vậy vào thời điểm 3 giờ trong ngày thì nhiều độ thấp nhất của thành phố là 26°C.
Đáp án: C
a) Thành phố A có đúng 12 giờ có ánh sáng mặt trời thì d(t)=12
Khi đó
\(\begin{array}{l}12 = 3\sin \left[ {\frac{\pi }{{182}}\left( {t - 80} \right)} \right] + 12\\ \Leftrightarrow \sin \left[ {\frac{\pi }{{182}}\left( {t - 80} \right)} \right] = 0\\ \Leftrightarrow \sin \left[ {\frac{\pi }{{182}}\left( {t - 80} \right)} \right] = \sin 0\\ \Leftrightarrow \frac{\pi }{{182}}\left( {t - 80} \right) = k\pi \\ \Leftrightarrow t = 80 + 182k;k \in Z\end{array}\)
Mà \(t \in \mathbb{Z}\) và \(0 < t \le 365\) nên
\(\begin{array}{l}0 < 80 + 182k \le 365\\ \Rightarrow 0 \le k \le 1,56\end{array}\)
Suy ra \(k \in \left\{ {0;1} \right\}\)
Khi đó \(t \in \left\{ {80;262} \right\}\)
Vậy Thành phố A có đúng 12 giờ có ánh sáng mặt trời vào ngày thứ 80 và 262 trong năm
b) Thành phố A có đúng 9 giờ có ánh sáng mặt trời thì d(t)=9
Khi đó
\(\begin{array}{l}9 = 3\sin \left[ {\frac{\pi }{{182}}\left( {t - 80} \right)} \right] + 12\\ \Leftrightarrow \sin \left[ {\frac{\pi }{{182}}\left( {t - 80} \right)} \right] = - 1\\ \Leftrightarrow \sin \left[ {\frac{\pi }{{182}}\left( {t - 80} \right)} \right] = \sin \left( { - \frac{\pi }{2}} \right)\\ \Leftrightarrow \frac{\pi }{{182}}(t - 80) = - \frac{\pi }{2} + k2\pi \\ \Leftrightarrow t = - 11 + 364k;k \in Z\end{array}\)
Mà \(t \in \mathbb{Z}\) và \(0 < t \le 365\) nên
\(\begin{array}{l}0 < - 11 + 364k \le 365\\ \Rightarrow 0 < k \le 1,03\end{array}\)
Suy ra \(k= 1\)
Khi đó \(t= - 11 + 364.1 = 353\)
Vậy Thành phố A có đúng 12 giờ có ánh sáng mặt trời vào ngày thứ 353 trong năm
c) Thành phố A có đúng 15 giờ có ánh sáng mặt trời thì d(t)=15
Khi đó
\(\begin{array}{l}15 = 3\sin \left[ {\frac{\pi }{{182}}\left( {t - 80} \right)} \right] + 12\\ \Leftrightarrow \sin \left[ {\frac{\pi }{{182}}\left( {t - 80} \right)} \right] = 1\\ \Leftrightarrow \sin \left[ {\frac{\pi }{{182}}\left( {t - 80} \right)} \right] = \sin \left( {\frac{\pi }{2}} \right)\\ \Leftrightarrow \frac{\pi }{{182}}(t - 80) = \frac{\pi }{2} + k2\pi \\ \Leftrightarrow t = 171 + 364k;k \in Z\end{array}\)
Mà \(t \in \mathbb{Z}\) và \(0 < t \le 365\) nên
\(\begin{array}{l}0 < 171 + 364k \le 365\\ \Rightarrow 0 \le k \le 0,53\end{array}\)
Suy ra \(k=0\)
Khi đó \(t= 171 + 364.0 = 171\)
Vậy Thành phố A có đúng 12 giờ có ánh sáng mặt trời vào ngày thứ 171 trong năm
Mấy câu trả lời SGK trình bày giúp anh Latex cái hoặc gõ ra nhưng gõ định dạng ấy em. Chứ như thế này anh sợ nhiều người không đọc được chữ ấy, mặc dù anh cũng đọc được.
Ta có:
\(\begin{array}{l}P'\left( t \right) = \frac{{{{\left( {500t} \right)}^\prime }\left( {{t^2} + 9} \right) - \left( {500t} \right){{\left( {{t^2} + 9} \right)}^\prime }}}{{{{\left( {{t^2} + 9} \right)}^2}}}\\ = \frac{{500\left( {{t^2} + 9} \right) - \left( {500t} \right).2t}}{{{{\left( {{t^2} + 9} \right)}^2}}}\\ = \frac{{500{t^2} + 4500 - 1000{t^2}}}{{{{\left( {{t^2} + 9} \right)}^2}}} = \frac{{4500 - 500{t^2}}}{{{{\left( {{t^2} + 9} \right)}^2}}}\end{array}\)
Tốc độ tăng dân số tại thời điểm \(t = 12\) là: \(P'\left( {12} \right) = \frac{{4500 - 500{t^2}}}{{{{\left( {{t^2} + 9} \right)}^2}}} \approx - 2,88\).
Lời giải:
$\sin (\frac{\pi t}{18}-\frac{\pi}{6})\leq 1$ với mọi $t\in [0;24]$
$\Rightarrow h\leq 2.1+5=7$
Vậy $h_{\max}=7\Leftrightarrow \sin (\frac{\pi t}{18}-\frac{\pi}{6})=1$
$\Leftrightarrow \frac{\pi t}{18}-\frac{\pi}{6})=\frac{\pi}{2}+2k\pi$ với $k$ nguyên
$\Leftrightarrow \frac{t}{18}-\frac{1}{6}=\frac{1}{2}+2k$ với $k$ nguyên
$\Leftrightarrow t=12+36k$ với $k$ nguyên.
Do $t\in [0;24]$ nên $t=12$
Đáp án C.
Đáp án B
G(x) = 0,035x2 (15 - x)
Bệnh nhân giảm huyết áp nhiều nhất khi và chỉ khi G(x) đạt giá trị lớn nhất G(x) = 0,105x2 + 1,05x
Cho G(x) = 0 <=> x = 0 hoặc x = 10
G(x) max khi và chỉ khi x = 10
a) t = 6
\( \Rightarrow B(6) = 80 + 7.\sin \frac{{\pi 6}}{{12}} = 80 + 7.\sin \frac{\pi }{2} = 87\)
b) t=10,5
\( \Rightarrow B(10,5) = 80 + 7.\sin \frac{{\pi 10,5}}{{12}} = 80 + 7.\sin \frac{{7\pi }}{8} = 82,67878\)
c) t=12
\( \Rightarrow B(12) = 80 + 7.\sin \frac{{\pi 12}}{{12}} = 80 + 7.\sin \pi = 80\)
d) t = 20
\(\begin{array}{l} \Rightarrow B(20) = 80 + 7.\sin \frac{{\pi 20}}{{12}} = 80 + 7.\sin \frac{{5\pi }}{3} = 80 + 7.\sin \left( {\pi + \frac{{2\pi }}{3}} \right) = 80 - 7.\sin \left( {\frac{{2\pi }}{3}} \right) = 80 - 7.\sin \left( {\pi - \frac{\pi }{3}} \right)\\ = 80 - 7.\sin \left( {\frac{\pi }{3}} \right) = \frac{{160 - 7\sqrt 3 }}{2}\end{array}\)