Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu 1:
Áp dụng hệ thức Vi-ét ta đc: \(x_1+x_2=2m+1;x_1x_2=m^2-3\)
có : \(x_1^2+x_2^2-\left(x_1+x_2\right)=8\Rightarrow\left(x_1+x_2\right)^2-2x_1x_2-\left(x_1+x_2\right)=8\Rightarrow\left(2m+1\right)^2-2.\left(m^2-3\right)-\left(2m+1\right)=8\)
\(\Rightarrow2m^2+4m+1-2m^2+6-2m-1=8\Rightarrow2m=2\Rightarrow m=1\)
câu 2 mk k bik lm nha
ADHT vi-et ta có \(x_1.x_2=-3\) và \(x_1+x_2=1\)
\(X=x_1^3x_2+x_2^3x_1+21=x_1x_2\left(x_1^2+x_2^2\right)+21=x_1x_2\left(\left(x_1+x_2\right)^2+2x_1x_2\right)\)
thay vi et vào là tính được
\(x^2-2mx+m^2-m+4=0\)
a/ ( a = 1; b = -2m; c = m^2 - m + 4 )
\(\Delta=b^2-4ac\)
\(=\left(-2m\right)^2-4.1.\left(m^2-m+4\right)\)
\(=4m^2-4m^2+4m-16\)
\(=4m-16\)
Để pt luôn có nghiệm \(\Leftrightarrow\Delta\ge0\Leftrightarrow4m-16\ge0\Leftrightarrow m\ge4\)
b/ Theo Vi-et ta có: \(\hept{\begin{cases}S=x_1+x_2=-\frac{b}{a}=2m\\P=x_1x_2=\frac{c}{a}=m^2-m+4\end{cases}}\)
Ta có: \(A=x_1^2+x_2^2-x_1x_2\)
\(=S^2-2P-P\)
\(=S^2-3P\)
\(=\left(2m\right)^2-3\left(m^2-m+4\right)\)
\(=4m^2-3m^2+3m-12\)
\(=m^2+3m-12\)
\(=m^2+3m+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2-12\)
\(=\left(m+\frac{3}{2}\right)^2-\frac{57}{4}\ge-\frac{57}{4}\)
Vậy: \(MinA=-\frac{57}{4}\Leftrightarrow\left(m+\frac{3}{2}\right)^2=0\Leftrightarrow m=-\frac{3}{2}\)
a)) Δ=b2-4ac
Δ=(-2m)2-4(m2-m+4)
Δ=4m-16
để pt có ng khi Δ > 0 & Δ=0
=> m> hoặc = 4
Cái này lập \(\Delta^'\) rroif xét delta theo 3 trường hợp ><=0 nếu trường hợp nào cso nghiệm thì lấy câu b thì dùng Viet thôi
a) Ta có đen ta phẩy
=(-(m-1)2)-m2-m+1
=m2+2m+1-m2-m+1
=m+2
Để phương trình có nghiệm thì đen ta lớn hơn hoặc bằng 0 <-> m+2 lớn hơn hoặc bằng 0 -> m lớn hơn hoặc bằng -2
b) vì đến ta > 0 (phần a) nên phương trình có 2 nghiệm x1 ; x2
áp dụng hệ thức vi ét vào phương trình x2-2(m+1)x+m2+m-1 ta được
x1+x2=2m+2 (1)
x1*x2=m2+m-1 (2)
Mặt khác : ta có x12+x22=(x12+2x1x2+x22)-2x1x2 (3)
x12+x22=(x1+x2)2-2x1x2
Thay (1),(2) vào (3) ta được :x12+x22=(2m+2)2-2*(m2+m-1)=0
<-> 4m2+8m+4-2m2-2m+2=0
<-> 2m2+6m+6=0
ta có đen ta = 36-48=-12
Do đen ta < 0 nên phương trình vô nghiệm
Vì phương trình vô nghiệm nên ko tồn tại 2 nghiệm x1 và x2
đen ta kí hiệu là hình tam giác
\(ax^2+bx+c=0\)
Do phương trình có 2 nghiệm dương
\(\Rightarrow\left\{{}\begin{matrix}\Delta>0\\S>0\\P>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b^2-4ac>0\\\dfrac{-b}{a}>0\\\dfrac{c}{a}>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b^2-4ac>0\\\dfrac{b}{a}< 0\\\dfrac{c}{a}>0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}b^2-4ac>0\\b,a\left(trái.dấu\right)\\c,a\left(cùng.dấu\right)\end{matrix}\right.\)
\(\Rightarrow b,c\) trái đấu
Xét \(cx^2+bx+a=0\)
Giả sử phương trình có 2 nghiệm dương
\(\Rightarrow\left\{{}\begin{matrix}\Delta>0\\P>0\\S>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b^2-4ac>0\\\dfrac{c}{a}>0\\\dfrac{-b}{c}>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b^2-4ac>0\\\dfrac{c}{a}>0\\\dfrac{b}{c}< 0\end{matrix}\right.\) ( 1 )
Do b , c trái dấu nên ( 1 ) luôn đúng vậy pt \(cx^2+bx+a=0\) luôn có 2 nghiệm dương phân biệt
\(\Rightarrow\) đpcm
Xét pt \(ax^2+bx+c=0\) \(\forall\left\{{}\begin{matrix}x_1>0\\x_2>0\end{matrix}\right.\)
Theo định lý Viet
\(\Rightarrow\left\{{}\begin{matrix}S=x_1+x_2=\dfrac{-b}{a}>0\\P=x_1x_2=\dfrac{c}{a}>0\end{matrix}\right.\)( 1 )
Xét pt \(cx^2+bx+a=0\) \(\forall\left\{{}\begin{matrix}x_3>0\\x_4>0\end{matrix}\right.\)
Theo định lý Viet
\(\Rightarrow\left\{{}\begin{matrix}S=x_3+x_4=\dfrac{-b}{c}>0\\P=x_3x_4=\dfrac{a}{c}>0\end{matrix}\right.\)( 2 )
Từ ( 1 ) và ( 2 )
Áp dụng bất đẳng thức Cauchy - Schwarz cho 4 bộ số thực không âm
\(\Rightarrow x_1+x_2+x_3+x_4\ge4\sqrt[4]{x_1x_2x_3x_4}\)
\(\Rightarrow x_1+x_2+x_3+x_4\ge4\sqrt[4]{\dfrac{c}{a}.\dfrac{a}{c}}=4\) ( đpcm )
Theo hệ thức Viet,ta có:
\(\left\{{}\begin{matrix}x_1+x_2=1\\x_1.x_2=-3\end{matrix}\right.\)
Ta có x13+x23+21=x1.x2(x12+x22)+21=(-3)\([\)(x1+x2)2-2x1.x2\(]\)+21=(-3)\([\)12-2(-3)\(]\) +21=0
Từ pt trên theo hệ thức Viet ta có:
\(\left\{{}\begin{matrix}x_1+x_2=1\\x_1x_2=-3\end{matrix}\right.\)
Mà : x13x2 + x23x1 + 21 = x1x2( x12+x22) +21 = x1x2((x1+x2)2-2x1x2)+21
Đến đây bạn thay vào là ra nhé ^^