K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2018

mọi người giúp e với ạ !!

AH
Akai Haruma
Giáo viên
23 tháng 3 2018

Bài 1:

Ta viết lại phương trình: \(3x^2+5x+(m-2)=0\)

Để pt có hai nghiệm (không nhất thiết phân biệt) thì:

\(\Delta=25-12(m-2)\geq 0\)

\(\Leftrightarrow m\leq \frac{49}{12}\)

Khi đó, áp dụng định lý Viete của pt bậc 2: \(\left\{\begin{matrix} x_1+x_2=-\frac{5}{3}\\ x_1x_2=\frac{m-2}{3}\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} \frac{1}{3}x_2+x_2=\frac{-5}{3}\\ \frac{1}{3}x_2^2=\frac{m-2}{3}\end{matrix}\right.\) (thay \(x_1=\frac{1}{3}x_2\) )

\(\Leftrightarrow \left\{\begin{matrix} x_2=\frac{-5}{4}\\ \frac{1}{3}x_2^2=\frac{m-2}{3}\end{matrix}\right.\) \(\Rightarrow \frac{m-2}{3}=\frac{1}{3}\left(\frac{-5}{4}\right)^2=\frac{25}{48}\)

\(\Leftrightarrow m=\frac{57}{16}\) (thỏa mãn)

Vậy \(m=\frac{57}{16}\)

TH1: m=1

Pt sẽ là -3x+2=0

hay x=2/3(loại)

TH2: m<>1

\(\text{Δ}=\left(-3\right)^2-4\left(m-1\right)\cdot2=9-8\left(m-1\right)=-8m+17\)

Để phương trình có hai nghiệm thì -8m+17>=0

hay m<=17/8

Ta có: \(\dfrac{1}{x_1}+\dfrac{1}{x_2}=3\)

\(\Leftrightarrow\dfrac{x_1+x_2}{x_1x_2}=3\)

\(\Leftrightarrow\dfrac{3}{m-1}=3\cdot\dfrac{2}{m-1}=\dfrac{6}{m-1}\)(vô lý)

AH
Akai Haruma
Giáo viên
4 tháng 3 2018

Lời giải:

a)

Khi $m=2$ phương trình trở thành:

\(x^2-2.2x+2^2-1=0\)

\(\Leftrightarrow x^2-4x+3=0\Leftrightarrow (x-1)(x-3)=0\)

\(\Leftrightarrow \left[\begin{matrix} x=1\\ x=3\end{matrix}\right.\)

b)

Để pt có hai nghiệm phân biệt thì:

\(\Delta'=m^2-(m^2-1)>0\Leftrightarrow 1>0\) (luôn đúng với mọi số thực $m$)

Khi đó áp dụng hệ thức Viete có: \(\left\{\begin{matrix} x_1+x_2=2m\\ x_1x_2=m^2-1\end{matrix}\right.\)

Do đó: \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{1}{2}\)

\(\Leftrightarrow \frac{x_1+x_2}{x_1x_2}=\frac{1}{2}\Leftrightarrow \frac{2m}{m^2-1}=\frac{1}{2}\)

\(\Rightarrow m^2-1=4m\Leftrightarrow m^2-4m-1=0\)

\(\Leftrightarrow (m-2)^2=5\Rightarrow \left[\begin{matrix} m=2+\sqrt{5}\\ m=2-\sqrt{5}\end{matrix}\right.\) (đều chọn)

6 tháng 3 2018

a) đơn giản (bước đệm làm b thôi

b) m thỏa mãn đồng thời hệ \(\left\{{}\begin{matrix}f\left(0\right)\ne0\\\Delta>0\\\dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{1}{2}\end{matrix}\right.\)\(\begin{matrix}\left(1\right)\\\left(2\right)\\\left(3\right)\end{matrix}\)

\(\left(1\right)\Leftrightarrow0-0+m^2-1\ne0\Leftrightarrow m\ne\left\{\pm1\right\}\)

\(\left(2\right)\Leftrightarrow\Delta'_{\left(x\right)}=m^2-m^2+4=4>0\forall m\Rightarrow m\in R\backslash\left\{\pm1\right\}\)

\(\left(3\right)\Leftrightarrow\dfrac{x_2+x_1}{x_1.x_2}=\dfrac{1}{2}\)

với đk m<=> \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1.x_2=m^2-1\\2\left(x_1+x_2\right)=x_1.x_2\end{matrix}\right.\)\(\Leftrightarrow m^2-4m-1=0\)

\(\Delta'_{\left(m\right)}=2^2+1=5\Rightarrow m=2\pm\sqrt{5}\) thỏa mãn đk m nhận

AH
Akai Haruma
Giáo viên
25 tháng 5 2018

Bài 1:

Trước tiên để pt có hai nghiệm thì:

\(\Delta'=2^2-(m+1)>0\Leftrightarrow m<3\)

Áp dụng định lý Viete cho pt bậc 2 là: \(\left\{\begin{matrix} x_1+x_2=-4\\ x_1x_2=m+1\end{matrix}\right.\)

Điều kiện: $x_1,x_2\neq 0$ \(\Leftrightarrow x_1x_2=m+1\neq 0\Leftrightarrow m\neq -1\)

Khi đó: \(\frac{x_1}{x_2}+\frac{x_2}{x_1}=\frac{10}{3}\)

\(\Leftrightarrow \frac{x_1^2+x_2^2}{x_1x_2}=\frac{10}{3}\Leftrightarrow \frac{x1^2+x_2^2+2x_1x_2}{x_1x_2}=\frac{16}{3}\)

\(\Leftrightarrow \frac{(x_1+x_2)^2}{x_1x_2}=\frac{16}{3}\Leftrightarrow \frac{(-4)^2}{m+1}=\frac{16}{3}\)

\(\Leftrightarrow m+1=3\Leftrightarrow m=2\) (thỏa mãn)

Vậy $m=2$

 Bài 2 bạn xem lại đề bài.