K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2015

Áp dụng: \(v_{max} = \omega A \Rightarrow A = \frac{v_{max}}{\omega} = 120/20 =6 \ cm\)

Li độ trễ pha \(\frac {\pi}{2}\) so với vận tốc, nên ta có phương trình dao động là: \(x = 6\cos(10 t - \frac{\pi}{2}) \ (cm)\)

Thay t = T/6 vào phương trình trên, ta được x = \(3\sqrt3 \ cm\)

3 tháng 7 2017

ở pt x=6 cos (10 t -pi/2) tại sao w=10 ạ

O
ongtho
Giáo viên
8 tháng 10 2015

Áp dụng: \(A^2 = x^2 + \frac{v^2}{\omega^2} \Rightarrow v = \pm\omega\sqrt{A^2-x^2}\),

Thay số, ta được v = \(\pm\) 25,12 cm/s.

7 tháng 6 2017

sai rồi ạ, bạn chưa xem pha ban đầu Pi/3

1 tháng 10 2015

Chu kì: \(T=\frac{2\pi}{5\pi}=0,4s\)

Trong thời gian 1/10 s = 1/4 T thì véc tơ quay đã quay một góc: 360/4 = 900.

Biểu diễn bằng véc tơ quay, ta dễ dàng tìm đc li độ thời điểm sau đó 1/10 s là 4 và -4cm.

1 tháng 10 2015

Chọn A.

5 tháng 8 2017

Chọn đáp án C

7 tháng 3 2017

Chọn C

+ vmax = ωA = 120; ω = 20 => A = 6cm

+ Li độ trễ pha π/2 rad so với vận tốc => φ = -π/2 rad

+ Thay t = T/6 vào x = Acos(ωt + φ) =  6 cos ( 2 π T t - π 2 ) = 3 3

1 tháng 10 2015

Áp dụng công thức: \(A^2 = x^2 +\frac{v^2}{\omega^2} \) \(\Rightarrow A^2 = 3^2 +\frac{(60\sqrt3)^2}{\omega^2} = (3\sqrt2)^2 +\frac{(60\sqrt2)^2}{\omega^2} \)

Giải hệ trên ta được \(\omega = 20rad/s; \ A =6cm\)

27 tháng 10 2015

Tốc độ trung bình của vật là \(v = \frac{\text{quãng đường đi được}}{t}\)

(chú ý là tốc độ trung bình khác với vận tốc trung bình vì vận tốc trung bình = \(\frac{x_{cuoi}-x_{dau}}{t}\))

Dùng đường tròn để tìm quãng đường và thời gian đi

4 -4 2 3 2 3 - M N a π/6 π/6 H K

Vật đi được từ điểm N (\(x = -2\sqrt{3}\) hường theo chiều dương của trục x) đến điểm M (\(x = 2\sqrt{3}\) hướng theo chiều dương của trục x) tức là ứng với cung \(\stackrel\frown{NaM}\)

Quãng đường đi được là: \(S = HK= 2\sqrt{3}+ 2\sqrt{3} = 4\sqrt{3}cm.\)

Thời gian đi \(t = \frac{\varphi}{\omega} = \frac{\pi/3+\pi/3}{8\pi} = \frac{1}{12}s.\)

Vận tốc trung bình là \(v = \frac{4\sqrt{3}}{1/12} = 48 \sqrt{3}cm/s.\)

Chọn đáp án. D

12 tháng 4 2020

Làm sao biết được là pi/6 vậy ạ. C chỉ giúp mình được không ạ?

26 tháng 9 2015

Phương trình tổng quát: \(x = Acos(\omega t +\varphi)\)

+ Tần số góc: \(\omega = \frac{2\pi}{T}=\frac{2\pi}{2} = \pi\) (rad/s)
+ Biên độ: \(A=\frac{v_{max}}{\omega}=\frac{31,4}{\pi} = 10 \ (cm)\)
+ t = 0 \(\Rightarrow\left\{ \begin{array}{} x_0 = 5\ cm\\ v_0 <0 \end{array} \right.\) \(\Rightarrow\left\{ \begin{array}{} \cos \varphi = \frac{5}{10}=0,5\\ \sin \varphi >0 \end{array} \right. \Rightarrow \varphi = \frac{\pi}{3}\)
Phương trình dao động: \(x=10\cos(\pi t + \frac{\pi}{3})\) (cm)
 
30 tháng 9 2015

Chu kỳ: \(T=\frac{2\pi}{5\pi}=0,4s\)

Trong thời gian 1/30 s thì véc tơ quay đã quay một góc: \(\frac{1}{30.0,4}.360=30^0\)

TH1: vật đang có li độ 3cm theo chiều dương --> véc tơ quay thêm 300 thì vật sẽ đến li độ 4,6cm.

TH2: vật đang có li độ 3cm theo chiều âm --> véc tơ quay thêm 300 thì vật sẽ đến li độ 0,6cm.

 

30 tháng 9 2015

Chọn D

8 tháng 10 2015

Áp dụng: \(a = -\omega^2 x =-(2\pi)^2.3 = - 120\ cm/s^2 \)