K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 1

Phương trình nghiệm nguyên là : dạng toán tìm điều kiện của phương trình để có được nghiệm nằm trong tập số Z.

10 tháng 1

Phương trình nghiệm nguyên là : dạng toán tìm điều kiện của phương trình để có được nghiệm nằm trong tập số Z.

Ta có: \(\left(\sqrt{2}\right)^2+a\cdot\sqrt{2}+b=0\)

\(\Leftrightarrow a\sqrt{2}+b=-2\)

Vì b là số nguyên 

và -2 cũng là số nguyên

nên \(a\sqrt{2}\) cũng là số nguyên(vô lý)

25 tháng 9 2021

\(x^2+ax+b=0\) có nghiệm là \(\sqrt{2}\) nên

\(2+a\sqrt{2}+b=0\\ \Leftrightarrow b=a\sqrt{2}\)

Mà \(a,b\in Z\) nên đẳng thức xảy ra khi: \(a=b=0\)

25 tháng 2 2019

Đề lỗi rồi kìa ba: \(+^2+\) là sao?

28 tháng 2 2019

Khó ghê,giải giúp anh với :v

1 tháng 2 2016

Minh moi hoc tieu hoc thui

1 tháng 2 2016

thế thì im đi ngứa mồm à

ai cần m giải đâu

16 tháng 2 2017

Lam nhanh ho mk voi mk rat gap

23 tháng 9 2021

Ta có: \(3x+19y=168\)

\(\Rightarrow3x=168-19y\Rightarrow x=56-\dfrac{19y}{3}\)

Để \(x\in Z\Leftrightarrow19y⋮3\Leftrightarrow y⋮3\)

\(\Rightarrow y=3t\left(t\in Z\right)\)

Khi đó \(x=56-19t\)

Vậy \(\left(x;y\right)\in\left\{56-19t;3t\right\}\left(t\in Z\right)\)

23 tháng 9 2021

3x + 19y = 168

<=> \(\left\{{}\begin{matrix}x=\dfrac{168-19x}{3}\\y=\dfrac{168-3x}{19}\end{matrix}\right.\)

6 tháng 8 2023

Xét \(y=0\Rightarrow x=\pm8\)

Với \(y\ge1\), ta thấy \(x⋮6\) và \(y⋮2\) (vì nếu \(y\) lẻ thì \(3^y\) chia 4 dư 3, vô lí)

\(x=3k,y=2l\left(k,l\inℤ,l\ge2\right)\) (nếu \(l=1\) thì \(y=2\Rightarrow x^2=72\), vô lí)

pt đã cho trở thành \(k^2=3^{2l-2}+7\) 

\(\Leftrightarrow k^2-\left(3^{l-1}\right)^2=7\)

\(\Leftrightarrow\left(k+3^{l-1}\right)\left(k-3^{l-1}\right)=7\)

Do \(k+3^{l-1}>k-3^{l-1}\) nên ta xét 2TH

TH1: \(\left\{{}\begin{matrix}k+3^{l-1}=7\\k-3^{l-1}=1\end{matrix}\right.\). Cộng theo vế  \(\Rightarrow2k=8\Rightarrow k=4\Rightarrow x=3k=12\) \(\Rightarrow3^y=x^2-63=144-63=81\Rightarrow y=4\)

Vậy ta tìm được cặp \(\left(x,y\right)=\left(12,4\right)\), thử lại thấy thỏa mãn.

TH2: \(\left\{{}\begin{matrix}k+3^{l-1}=-1\\k-3^{l-1}=-7\end{matrix}\right.\)

Cộng theo vế \(\Rightarrow2k=-8\Rightarrow k=-4\Rightarrow x=-12\)

\(\Rightarrow3^y=x^2-63=144-63=81\Rightarrow y=4\)

Vậy ta tìm được thêm cặp số \(\left(x;y\right)=\left(-12;4\right)\). Như vậy, pt đã cho có các nghiệm nguyên \(\left(x;y\right)\in\left\{\left(\pm8;0\right);\left(\pm12;4\right)\right\}\)