K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2021

\(mx^2+2\left(m-1\right)x+m+3=0\)(Đk:m≠0)

\(\Delta'=\left(m-1\right)^2-m\left(m+3\right)\)

\(\Delta'=m^2-2m+1-m^2-3m\)

\(\Delta'=1-5m\)

a,Để pt có nghiệm kép 

Thì\(\Delta'=0\)

\(\Leftrightarrow1-5m=0\Rightarrow m=\dfrac{1}{5}\)

b, Để pt có 2 nghiệm phân biệt

Thì\(\Delta'>0\)

\(\Leftrightarrow1-5m>0\Rightarrow m< \dfrac{1}{5}\)

c,Để pt có nghiệm 

Thì\(\Delta'\ge0\)

\(\Leftrightarrow1-5m\ge0\Rightarrow m\le\dfrac{1}{5}\)

d, Để pt vô nghiệm 

Thì\(\Delta'< 0\)

\(\Leftrightarrow1-5m< 0\Rightarrow m>\dfrac{1}{5}\)

 

AH
Akai Haruma
Giáo viên
30 tháng 7 2021

Lời giải:
$m=0$ thì pt trở thành $-2x+3=0\Leftrightarrow x=\frac{3}{2}$

$m\neq 0$ thì pt là pt bậc 2 ẩn $x$

$\Delta'=(m-1)^2-m(m+3)=1-5m$

PT có nghiệm kép $\Leftrightarrow \Delta'=1-5m=0\Leftrightarrow m=\frac{1}{5}$

PT có 2 nghiệm pb $\Leftrightarrow \Delta'=1-5m>0$

$\Leftrightarrow m< \frac{1}{5}$

Vậy pt có 2 nghiệm pb khi $m< \frac{1}{5}$ và $m\neq 0$

PT có nghiệm khi \(\left[\begin{matrix} m=0\\ \Delta'=1-5m\geq 0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} m=0\\ m\leq \frac{1}{5}\end{matrix}\right.\Leftrightarrow m\leq \frac{1}{5}\)

PT vô nghiệm khi $\Delta'=1-5m< 0$

$\Leftrightarrow m> \frac{1}{5}$

9 tháng 3 2023

\(2)mx^2-2\left(m-1\right)x+m-1=0\)

Để pt có nghiệm kép \(\Leftrightarrow\left\{{}\begin{matrix}a\ne0\\\Delta=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\\left[-2\left(m-1\right)\right]^2-4m\left(m-1\right)=0\end{matrix}\right.\)

\(\Leftrightarrow4\left(m^2-2m+1\right)-4m^2+4m=0\)

\(\Leftrightarrow4m^2-8m+4-4m^2+4m=0\)

\(\Leftrightarrow-4m+4=0\)

\(\Leftrightarrow m=1\)

Vậy để pt trên có nghiệm kép thì \(\left\{{}\begin{matrix}m\ne0\\m=1\end{matrix}\right.\)

9 tháng 3 2023

bạn giải 1 giúp mình với

19 tháng 5 2020

a) PT có nghiệm kép nếu

\(\hept{\begin{cases}m-1\ne0\\\Delta'=\left(m-1\right)^2+m\left(m-1\right)=0\end{cases}\Leftrightarrow\hept{\begin{cases}m\ne1\\\left(m-1\right)\left(2m-1\right)=0\end{cases}\Leftrightarrow}m=\frac{1}{2}}\)

Vậy \(m=\frac{1}{2}\)thì pt có nghiệm kép

\(x_1=x_2=-\frac{b}{2a}=-\frac{2\left(m-1\right)}{2\left(m-1\right)}=-1\)

b) Để pt có nghiệm phân biệt đều âm thì

\(\hept{\begin{cases}m-1\ne0\\\Delta'=\left(m-1\right)\left(2m-1\right)>0\end{cases}}\)

\(\hept{\begin{cases}x_1\cdot x_2=-\frac{m}{m-1}>0\\x_1+x_2=\frac{2\left(m-1\right)}{m-1}< 0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}m>1\\m< \frac{1}{2}\end{cases}}\)và \(0< m< 1\)

Vậy 0<m<\(\frac{1}{2}\)

19 tháng 5 2020

định gõ ấn f5 cái thì thấy bạn làm xong r :(( 

giải nhanh quá ! 

3 tháng 5 2022

1. 

xét delta có 

25 -4(-m-3)

= 25 + 4m + 12 

= 4m + 37 

để phương trình có nghiệm kép thì delta = 0 

=> 4m + 37 = 0 => m = \(\dfrac{-37}{4}\)

2. 

a) xét delta 

25 - 4(m-3) = 25 - 4m + 12 = -4m + 37 

để phương trình có nghiệm kép thì delta = 0 

=> -4m + 37 = 0 

=> m = \(\dfrac{37}{4}\)

b)

xét delta 

25 - 4(m-3) = 25 - 4m + 12 = -4m + 37 

để phương trình có 2 nghiệm phân biệt thì delta > 0 

=> -4m + 37 > 0 

=> m < \(\dfrac{37}{4}\)

25 tháng 8 2021

a, Để pt có 2 nghiệm pb khi \(\Delta>0\)

\(\Delta=\left(-2m\right)^2-4\left(m+6\right)=4m^2-4m-24>0\Leftrightarrow m< -2;m>3\)

b, Để pt trên là pt bậc 2 khi \(m\ne0\)

Để pt vô nghiệm khi \(\Delta< 0\)

\(\Delta=4m^2-4m\left(m+3\right)=4m^2-4m^2-12m< 0\Leftrightarrow-12m< 0\Leftrightarrow m>0\)

c, Để pt trên là pt bậc 2 khi \(m\ne2\)

Để pt trên có nghiệm kép \(\Delta=0\)

\(\Delta=\left(2m-3\right)^2-4\left(m+1\right)\left(m-2\right)=4m^2-12m+9-4\left(m^2-m-2\right)\)

\(=-8m+17=0\Leftrightarrow m=\frac{17}{8}\)