K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 3 2022

Ta có: \(\Delta'=\left(-3\right)^2-3m=9-3m\)

Để pt có nghiệm kép thì 

\(\Delta'=0\\ \Leftrightarrow9-3m=0\\ \Leftrightarrow m=3\)

Chọn A

 

14 tháng 6 2021

a, Thay m = 1 vào phương trình trên ta được 

phương trình có dạng : \(x^2-3x=0\Leftrightarrow x\left(x-3\right)=0\Leftrightarrow x=0;x=3\)

b, Để phương trình có nghiệm kép \(\Delta=0\)

\(\Delta=9-4\left(m-1\right)=9-4m+4=0\Leftrightarrow13-4m=0\Leftrightarrow m=\frac{13}{4}\)

c, Để 2 nghiệm của pt là độ dài hcn khi 2 nghiệm đều dương 

\(\hept{\begin{cases}\Delta=9-4\left(m+1\right)>0\\x_1+x_2=-\frac{b}{a}=3>0\\x_1x_2=\frac{c}{a}=m-1>0\end{cases}\Leftrightarrow1< m< \frac{13}{4}}\)

Diện tích hình chữ nhật là : \(x_1x_2=2\Leftrightarrow m-1=2\Leftrightarrow m=3\)( tmđk ) 

a: TH1: m=3

=>2x-5=0

=>x=5/2(nhận)

TH2: m<>3

Δ=2^2-4*(m-3)*(-5)

=4+20(m-3)

=4+20m-60=20m-56

Để phương trình có nghiệm kép thì 20m-56=0

=>m=2,8

=>-0,2x^2+2x-5=0

=>x^2-10x+25=0

=>x=5

b: Để phươg trình có hai nghiệm pb thì 20m-56>0

=>m>2,8

a: \(x^2+\left(2m+1\right)x+m^2-3=0\)

\(\text{Δ}=\left(2m+1\right)^2-4\left(m^2-3\right)\)

\(=4m^2+4m+1-4m^2+12=4m+13\)

Để phương trình có nghiệm kép thì 4m+13=0

=>\(m=-\dfrac{13}{4}\)

Thay m=-13/4 vào phương trình, ta được:

\(x^2+\left(2\cdot\dfrac{-13}{4}+1\right)x+\left(-\dfrac{13}{4}\right)^2-3=0\)

=>\(x^2-\dfrac{11}{2}x+\dfrac{121}{16}=0\)

=>\(\left(x-\dfrac{11}{4}\right)^2=0\)

=>x-11/4=0

=>x=11/4

b: TH1: m=2

Phương trình sẽ trở thành \(\left(2+1\right)x+2-3=0\)

=>3x-1=0

=>3x=1

=>\(x=\dfrac{1}{3}\)

=>Khi m=2 thì phương trình có nghiệm kép là x=1/3

TH2: m<>2

\(\text{Δ}=\left(m+1\right)^2-4\left(m-2\right)\left(m-3\right)\)

\(=m^2+2m+1-4\left(m^2-5m+6\right)\)

\(=m^2+2m+1-4m^2+20m-24\)

\(=-3m^2+22m-23\)

Để phương trình có nghiệm kép thì Δ=0

=>\(-3m^2+22m-23=0\)

=>\(m=\dfrac{11\pm2\sqrt{13}}{3}\)

*Khi \(m=\dfrac{11+2\sqrt{13}}{3}\) thì \(x_1+x_2=\dfrac{-m-1}{m-2}=\dfrac{2-2\sqrt{13}}{3}\)

=>\(x_1=x_2=\dfrac{1-\sqrt{13}}{3}\)

*Khi \(m=\dfrac{11-2\sqrt{13}}{3}\) thì \(x_1+x_2=\dfrac{-m-1}{m-2}=\dfrac{2+2\sqrt{13}}{3}\)

=>\(x_1=x_2=\dfrac{1+\sqrt{13}}{3}\)

c: TH1: m=0

Phương trình sẽ trở thành

\(0x^2-\left(1-2\cdot0\right)x+0=0\)

=>-x=0

=>x=0

=>Nhận

TH2: m<>0

\(\text{Δ}=\left(-1+2m\right)^2-4\cdot m\cdot m\)

\(=4m^2-4m+1-4m^2=-4m+1\)

Để phương trình có nghiệm kép thì -4m+1=0

=>-4m=-1

=>\(m=\dfrac{1}{4}\)

Khi m=1/4 thì \(x_1+x_2=\dfrac{-b}{a}=\dfrac{-\left[-1+2m\right]}{m}=\dfrac{-2m+1}{m}\)

=>\(x_1+x_2=\dfrac{-2\cdot\dfrac{1}{4}+1}{\dfrac{1}{4}}=\dfrac{-\dfrac{1}{2}+1}{\dfrac{1}{4}}=\dfrac{1}{2}:\dfrac{1}{4}=2\)

=>\(x_1=x_2=\dfrac{2}{2}=1\)

19 tháng 5 2015
theo de bai a=8 hay x,^2+x,,^2-6x,x,, =8 <=>(x,+x,,)^2-8x,x,,=8 (*) theo vi-et : S= m;P=m-1 thay vao pt (*) dc m^2-8m+8=8 <=>m^2-8m=0 <=>m(m-8)=0 <=>m=0 hoacm=8 dung k...x, la x1;x,,la x2 theo
10 tháng 4 2017

Bước 1: Tìm \(\Delta\)và rút gọn

Bước 2: Để pt .. <=> \(\Delta\).. 0

Bước 3: Kết luận

Chúc bạn thành công =))))))

10 tháng 4 2017

Bổ sung thêm bước 2: Là phải giải bất pt hoặc pt nhé 

14 tháng 5 2019

câu c trên mạng có mà :v

14 tháng 5 2019

Gọi x1,x2 là hai nghiệm của pt (1) : x^2 - 97x + a = 0 và x3,x4 là 2 nghiệm của pt (2) : x^2 - x + b = 0 
Theo hệ thức Vi-ét : 
x1 + x2 = 97 và x1.x2 = a 
x3 + x4 = 1 và x3.x4 = b 
Theo đề bài : 
* x1 + x2 = x3^4 + x4^4 
<=> x1 + x2 = (x3^2 + x4^2)^2 - 2.(x3.x4)^2 
<=> x1 + x2 = [(x3 + x4)^2 - 2.x3.x4]^2 - 2(x3.x4)^2 
<=> 97 = (1 - 2b)^2 - 2b^2 
<=> 2b^2 - 4b - 96 = 0 (1) 
* x1.x2 = (x3.x4)^4 
<=> b^4 = a (2) 
Từ (1) được b = 8 hoặc b = -6 
Suy ra a = 4096 hoặc a = 1296 
Thử lại nhận a = 1296 
Nguồn: https://vn.answers.yahoo.com/question/index?qid=20130328075420AAV3DV4