Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Phương pháp:
- Đưa phương trình mặt phẳng (P) về dạng chỉ còn 1 tham số.
- (P) cắt (S) theo giao tuyến là đường tròn có bán kính nhỏ nhất <=> d(I;(P)) max, trong đó: I là tâm mặt cầu (S).
Cách giải:
( S ) : x - 1 2 + y - 2 2 + z - 3 2 = 25 có tâm I(1;2;3) và bán kính R = 5
- (P) cắt (S) theo giao tuyến là đường tròn có bán kính nhỏ nhất <=> d(I;(P)) max, trong đó: I là tâm mặt cầu (S)
Ta có
Ta có:
(*) có nghiệm
Khi đó T =a+b+c =2-2c+2+c=4-1 =3
Đáp án A
Phương pháp:
+) Để mặt phẳng (P) cắt (S) theo giao tuyến là đường tròn có bán kính nhỏ nhất thì d ( I ; ( P ) ) m a x
+) Gọi H và K lần lượt là chân đường vuông góc của I trên (P) và trên đường thẳng AB. Ta có: HI ≤ IK
Cách giải:
Khi đó mặt phẳng (P) có dạng :
Mặt cầu (S) có tâm I(1;2;3), bán kính R = 5
Gọi H và K lần lượt là chân đường vuông góc của I trên (P) và trên đường thẳng AB. Ta có : HI ≤ IK
Để mặt phẳng (P) cắt (S) theo giao tuyến là đường tròn có bán kính nhỏ nhất thì
=>Phương trình đường thẳng AB:
Vì
là 1 VTPT của (P)
=> I H → và vec tơ pháp tuyến n ( P ) → = ( 2 - 2 c ; 2 ; c ) cùng phương
Đáp án C
( S ) : x - 1 2 + y + 2 2 + z - 3 2 = 27
=> I(1;-2;3), R= 3 3
A(0;0;-4) và B(2;0;0) α : ax+by-z+c=0
Ta có:
Ta có: V = 1 3 π 27 - r 2 . r 2
Chọn C
* Ta có: trong đó a;b;c không đồng thời bằng 0. Mặt cầu (S) có tâm I (1;2;3) và bán kính R=5.
Do mặt phẳng (P) chứa đường thẳng AB nên ta có:
* Bán kính đường tròn giao tuyến là trong đó
Để bán kính đường tròn nhỏ nhất điều kiện là d lớn nhất lớn nhất lớn nhất.
Coi hàm số là một phương trình ẩn c ta được
5mc²-2 (4m+1)c+ (8m-3)=0,
phương trình có nghiệm c lớn nhất
<=> c = 1 => a = 0 => M = 2a + b – c = 1
Đáp án B
Xét ( S ) : x 1 2 + y - 2 2 + z - 3 2 = 16 có tâm I(1;2;3), bán kính R = 4
Gọi O là hình chiếu của I trên (P).
Khi và chỉ khi IO ≡ IHvới H là hình chiếu của I trên AB.
I H → là véc tơ pháp tuyến của mp (P) mà IA = IB => H là trung điểm của AB
Chọn B
Mặt cầu có tâm I (1; 2; 3) bán kính là R = 4. Ta có A, B nằm trong mặt cầu.
Gọi K là hình chiếu của I trên AB và H là hình chiếu của I lên thiết diện.
Ta có diện tích thiết diện bằng
Do đó diện tích thiết diện nhỏ nhất khi IH lớn nhất. Mà suy ra (P) qua A, B và vuông góc với IK. Ta có IA = IB = √5 suy ra K là trung điểm của AB
Vậy K (0; 1; 2) và
Vậy (P): (x - 1) + y + (z- 2) = 0 => - x - y - z + 3 = 0. Vậy T = -3