K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
29 tháng 9 2020

\(3sin3x-4sin^33x+\sqrt{3}sin9x=1\)

\(\Leftrightarrow sin9x+\sqrt{3}sin9x=1\)

\(\Leftrightarrow\left(\sqrt{3}+1\right)sin9x=1\)

\(\Leftrightarrow sin9x=\frac{1}{\sqrt{3}+1}\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{9}arcsin\left(\frac{1}{\sqrt{3}+1}\right)+k2\pi\\x=\pi-\frac{1}{9}arcsin\left(\frac{1}{\sqrt{3}+1}\right)+k2\pi\end{matrix}\right.\)

NV
19 tháng 10 2020

Câu 1:

\(cos^2\) gì nhỉ?

Câu 2: đề không hợp lý \(\sqrt{3}sin9x\)\(\sqrt{3}cos9x\) có lý hơn

\(\Leftrightarrow3sin3x-4sin^33x+\sqrt{3}sin9x=1\)

\(\Leftrightarrow sin9x+\sqrt{3}sin9x=1\)

\(\Leftrightarrow sin9x=\frac{1}{\sqrt{3}+1}\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{9}arcsin\left(\frac{1}{\sqrt{3}+1}\right)+\frac{k2\pi}{9}\\x=\frac{\pi}{9}-\frac{1}{9}arcsin\left(\frac{1}{\sqrt{3}+1}\right)+\frac{k2\pi}{9}\end{matrix}\right.\)

Nghiệm nhìn rất ngớ ngẩn nếu đề đúng

3.

\(\Leftrightarrow\frac{1}{2}-\frac{1}{2}cos2x+\frac{\sqrt{3}}{2}sin2x=1\)

\(\Leftrightarrow sin\left(2x-\frac{\pi}{6}\right)=\frac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-\frac{\pi}{6}=\frac{\pi}{6}+k2\pi\\2x-\frac{\pi}{6}=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow...\)

20 tháng 8 2019

chịu thua

20 tháng 8 2019

giải ko ra hay sao ạ

NV
17 tháng 9 2019

\(sin9x=3sin3x\Leftrightarrow3sin3x-4sin^33x=3sin3x\)

\(\Rightarrow sin^33x=0\Rightarrow sin3x=0\)

\(\Rightarrow3x=k\pi\Rightarrow x=\frac{k\pi}{3}\)

Do \(0\le x\le180\) (đề là \(180\) hay \(180\pi\) đây)

\(\Rightarrow0\le\frac{k\pi}{3}\le180\)

\(\Rightarrow0\le k\le\frac{540}{\pi}\)

\(\Rightarrow0\le k\le171\) (do \(k\in Z\))

\(172\) nghiệm

27 tháng 8 2021

1, Phương trình tương đương

\(\dfrac{\sqrt{3}}{2}sin2x-\dfrac{1}{2}cos2x=1\)

⇔ \(sin\left(2x-\dfrac{\pi}{6}\right)=1\)

⇔ \(2x-\dfrac{\pi}{6}=\dfrac{\pi}{2}+k.2\pi\)

⇔ x = \(\dfrac{\pi}{3}+k.\pi\)

2, \(2cos3x+3sin3x-2\)

\(\sqrt{13}\)\((\dfrac{2}{\sqrt{13}}cos3x+\dfrac{3}{\sqrt{13}}sin3x)\) - 2

Do \(\left(\dfrac{2}{\sqrt{13}}\right)^2+\left(\dfrac{3}{\sqrt{13}}\right)^2=1\) nên tồn tại 1 góc a sao cho \(\left\{{}\begin{matrix}sina=\dfrac{2}{\sqrt{13}}\\cosa=\dfrac{2}{\sqrt{13}}\end{matrix}\right.\)

BT = \(\sqrt{13}sin\left(x+a\right)-2\)

Do - 1 ≤ sin (x + a) ≤ 1 với mọi x và a

⇒ \(-\sqrt{13}-2\le BT\le\sqrt{13}-2\)

⇒ \(-5,6< BT< 1,6\)

Vậy BT nhận 5 giá trị nguyên trong tập hợp S = {-5 ; -4 ; -3 ; -2 ; -1}

3. \(msinx-cosx=\sqrt{5}\)

⇔ \(\dfrac{m}{\sqrt{m^2+1}}.sinx-\dfrac{1}{\sqrt{m^2+1}}.cosx=\dfrac{\sqrt{5}}{\sqrt{m^2+1}}\)

⇔ sin(x - a) = \(\sqrt{\dfrac{5}{m^2+1}}\) với \(\left\{{}\begin{matrix}sina=\dfrac{1}{\sqrt{m^2+1}}\\cosa=\dfrac{m}{\sqrt{m^2+1}}\end{matrix}\right.\)

Điều kiện có nghiệm : \(\left|\sqrt{\dfrac{5}{m^2+1}}\right|\le1\)

⇔ m2 + 1 ≥ 5 

⇔ m2 - 4 ≥ 0

⇔ \(\left[{}\begin{matrix}m\ge2\\m\le-2\end{matrix}\right.\)

24 tháng 4 2017

Chọn D

Vậy phương trình có 5 nghiệm thỏa mãn.

19 tháng 12 2019

Chọn A

20 tháng 4 2018

Đáp án D