Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta thấy:
\(\bullet \) Nếu \(a\vdots p\Rightarrow b\vdots p\Rightarrow a^b+b^a;a^a+b^b\vdots p\)
Mặt khác, \(a,b\) nên \(a^b+b^a;a^a+b^b\) chẵn, do đó \(a^b+b^a;a^a+b^b\vdots 2\)
Mà \((2,p)=1\Rightarrow a^a+b^b;a^b+b^a\vdots 2p\) (đpcm)
\(\bullet \) Nếu \((a,p)=(b,p)=1\)
+) Với \(a^b+b^a\)
\(a+b\equiv 0\pmod p\Rightarrow a\equiv -b\pmod p\)
Do đó, \(a^b+b^a\equiv (-b)^b+b^a\equiv b^a-b^b\pmod p\) (do \(b\) lẻ)
\(\Leftrightarrow a^b+b^a\equiv b^b(b^{a-b}-1)\pmod p\) \((\star)\)
Vì \(a-b\vdots p-1\Rightarrow a-b=k(p-1)\) (với \(k\in\mathbb{N})\)
\(\Rightarrow b^{a-b}-1=b^{k(p-1)}-1\)
Áp dụng định lý Fermat nhỏ với \((b,p)=1\) :
\(b^{p-1}\equiv 0\pmod p\Rightarrow b^{k(p-1)}\equiv 1\pmod p\)
\(\Leftrightarrow b^{k(p-1)}-1\equiv 0\pmod p\Leftrightarrow a^b+b^a\equiv 0\pmod p\)
Mặt khác cũng dễ cm \(a^b+b^a\vdots 2\), và \((p,2)=1\Rightarrow a^b+b^a\vdots 2p\) (đpcm)
+) Với \(a^a+b^b\)
\(a^a+b^b\equiv (-b)^a+b^b\equiv b^b-b^a\equiv b^a-b^b\equiv b^b(b^{a-b}-1)\pmod p\)
Đến đây giống y như khi xét \(a^b+b^a\) ( đoạn \((\star)\) ) ta suy ra \(a^a+b^b\equiv 0\pmod p\)
Mà cũng thấy \(a^a+b^b\vdots 2\), và \((2,p)=1\Rightarrow a^a+b^b\vdots 2p\)
Đăng kí kênh mk trước đã :))
https://www.youtube.com/channel/UCDzPbNuOqJIyWVO-EaxgW3Q?view_as=subscriber <Trang cá nhân>
KB LUN NHÉ :))
&YOUTUBER&
https://www.youtube.com/watch?v=1-62NyxCwmM&feature=youtu.be
KHÔNG ĐĂNG CÂU HỎI LINH TINH
~ Hok tốt ~
#Nobi