Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hàm tuần hoàn chu kì \(T=2\pi\) nên ta chỉ cần khảo sát trên đoạn \(\left[0;2\pi\right]\)
\(y'=-3cosx-4sin2x=0\Leftrightarrow-cosx\left(3+8sinx\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\x=arcsin\left(-\frac{3}{8}\right)+k2\pi\\x=\pi-arcsin\left(-\frac{3}{8}\right)+k2\pi\end{matrix}\right.\)
Để ngắn gọn thì đặt \(b=2\pi+arcsin\left(-\frac{3}{8}\right)\) ; \(a=\pi-arcsin\left(-\frac{3}{8}\right)\)
BBT:
Hàm đạt cực tiểu tại \(x=\frac{\pi}{2}+k\pi\)
Hàm đạt cực đại tại \(\left[{}\begin{matrix}x=arcsin\left(-\frac{3}{8}\right)+k2\pi\\x=\pi-arcsin\left(-\frac{3}{8}\right)+k2\pi\end{matrix}\right.\)
Hàm đồng biến trên các khoảng \(\left(\frac{\pi}{2}+k2\pi;\pi-arcsin\left(-\frac{3}{8}\right)+k2\pi\right)\) và \(\left(\frac{3\pi}{2}+k2\pi;arcsin\left(-\frac{3}{8}\right)+k2\pi\right)\)
Hàm nghịch biến trên các khoảng \(\left(\pi-arcsin\left(-\frac{3}{8}\right)+k2\pi;\frac{3\pi}{2}+k2\pi\right)\) và \(\left(arcsin\left(-\frac{3}{8}\right)+k2\pi;\frac{5\pi}{2}+k2\pi\right)\)
\(y_{max}=\frac{89}{16}\) khi \(sinx=-\frac{3}{8}\)
\(y_{min}=-2\) khi \(sinx=1\)
1.
\(\lim\left(\sqrt{9^n-2.3^n}-3^n+\dfrac{1}{2021}\right)\)
\(=\lim\left(\dfrac{\left(\sqrt{9^n-2.3^n}-3^n\right)\left(\sqrt{9^n-2.3^n}+3^n\right)}{\sqrt{9^n-2.3^n}+3^n}+\dfrac{1}{2021}\right)\)
\(=\lim\left(\dfrac{-2.3^n}{\sqrt{9^n-2.3^n}+3^n}+\dfrac{1}{2021}\right)\)
\(=\lim\left(\dfrac{-2.3^n}{3^n\left(\sqrt{1-\dfrac{2}{3^n}}+1\right)}+\dfrac{1}{2021}\right)\)
\(=\lim\left(\dfrac{-2}{\sqrt{1-\dfrac{2}{3^n}}+1}+\dfrac{1}{2021}\right)\)
\(=\dfrac{-2}{1+1}+\dfrac{1}{2021}=-\dfrac{2020}{2021}\)
2.
\(AP=4PB=4\left(AB-AP\right)=4AB-4AP\)
\(\Rightarrow5AP=4AB\Rightarrow AP=\dfrac{4}{5}AB\)
\(\Rightarrow\overrightarrow{AP}=\dfrac{4}{5}\overrightarrow{AB}\)
\(CD=5CQ=5\left(CD-DQ\right)\Rightarrow5DQ=4CD\Rightarrow DQ=\dfrac{4}{5}CD\)
\(\Rightarrow\overrightarrow{DQ}=-\dfrac{4}{5}\overrightarrow{CD}\)
Ta có:
\(\overrightarrow{PQ}=\overrightarrow{PA}+\overrightarrow{AD}+\overrightarrow{DQ}=-\dfrac{4}{5}\overrightarrow{AB}+\overrightarrow{AD}-\dfrac{4}{5}\overrightarrow{CD}\)
\(=-\dfrac{4}{5}\left(\overrightarrow{AD}+\overrightarrow{DB}\right)+\overrightarrow{AD}-\dfrac{4}{5}\overrightarrow{CD}=-\dfrac{4}{5}\overrightarrow{AD}-\dfrac{4}{5}\overrightarrow{DB}+\overrightarrow{AD}-\dfrac{4}{5}\overrightarrow{CD}\)
\(=\dfrac{1}{5}\overrightarrow{AD}-\dfrac{4}{5}\left(\overrightarrow{CD}+\overrightarrow{DB}\right)=\dfrac{1}{5}\overrightarrow{AD}-\dfrac{4}{5}\overrightarrow{CB}\)
\(=\dfrac{1}{5}\overrightarrow{AD}+\dfrac{4}{5}\overrightarrow{BC}\)
Mà \(\overrightarrow{AD};\overrightarrow{BC}\) không cùng phương\(\Rightarrow\overrightarrow{AD};\overrightarrow{BC};\overrightarrow{PQ}\) đồng phẳng