Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(x^2-4y^2+4x+8y=\left(x-2y\right)\left(x+2y\right)+4\left(x+2y\right)=\left(x+2y\right)\left(x-2y+4\right)\)
a: Ta có: \(\left(x+3\right)\left(x+4\right)\left(x+5\right)\left(x+6\right)+1\)
\(=\left(x^2+9x+18\right)\left(x^2+9x+20\right)+1\)
\(=\left(x^2+9x\right)^2+38\left(x^2+9x\right)+360+1\)
\(=\left(x^2+9x\right)^2+2\cdot\left(x^2+9x\right)\cdot19+19^2\)
\(=\left(x^2+9x+19\right)^2\)
b. \(x^2+y^2+2x+2y+2\left(x+1\right)\left(y+1\right)+2\)
\(=\left(x^2+2x+1\right)+2\left(x+1\right)\left(y+1\right)+\left(y^2+2y+1\right)\)
\(=\left(x+1\right)^2+2\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2\)
\(=\left(x+1+y+1\right)^2=\left(x+y+2\right)^2\)
c. \(x^2-2x\left(y+2\right)+y^2+4y+4\)
\(=x^2-2x\left(y+2\right)+\left(y+2\right)^2\)
\(=\left(x-y-2\right)^2\)
d. \(x^2+2x\left(y+1\right)+y^2+2y+1\)
\(=x^2+2x\left(y+1\right)+\left(y+1\right)^2\)
\(=\left(x+y+1\right)^2\)
a: =x^2+2xy+y^2-4x^2y^2
=(x+y)^2-(2xy)^2
=(x+y+2xy)(x+y-2xy)
b: =49-(a^2-2ab+b^2)
=49-(a-b)^2
=(7-a+b)(7+a-b)
c: =\(a^2-\left(b^2-4bc+4c^2\right)\)
\(=a^2-\left(b-2c\right)^2=\left(a-b+2c\right)\left(a+b-2c\right)\)
d:
\(=\left(bc\right)^2-\left(b^2+c^2-a^2\right)^2\)
\(=\left(bc-b^2-c^2+a^2\right)\left(bc+b^2+c^2-a^2\right)\)
e: \(=\left(a+b\right)^2+2c\left(a+b\right)+c^2+\left(a+b\right)^2-2c\left(a+b\right)+c^2-4c^2\)
=2(a+b)^2-2c^2
=2[(a+b)^2-c^2]
=2(a+b-c)(a+b+c)
a) \(A=7x^2-2x+1=7\left(x^2-\frac{2}{7}x+\frac{1}{7}\right)\)
\(=7\left(x^2+\frac{2}{7}x+\frac{1}{49}+\frac{6}{49}\right)\)
\(=7\left[\left(x+\frac{1}{7}\right)^2+\frac{6}{49}\right]=7\left(x+\frac{1}{7}\right)^2+\frac{6}{7}\ge\frac{6}{7}\)
Vậy \(A_{min}=\frac{6}{7}\Leftrightarrow x=\frac{-1}{7}\)