K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét (O) có

ΔADB nội tiếp

AB là đường kính

=>ΔADB vuông tại D

Xét (O) có

ΔACB nội tiếp

AB là đường kính

=>ΔABC vuông tại C

Xét ΔEDA vuông tại D và ΔECB vuông tại C có

góc DEA=góc CEB

=>ΔEDA đồng dạng với ΔECB

=>ED/EC=EA/EB

=>ED*EB=EC*EA

b: góc DCA=1/2*sđ cung AD

góc FCA=góc DBA=1/2*sđ cung AD

=>góc DCA=góc FCA
=>CA là phân giác của góc DCF

c: Xét ΔQAB có

QF,BD là đường cao

QF cắt BD tại E

=>E là trực tâm

=>AC vuông góc BQ

mà AC vuông góc BC

nên B,C,Q thẳng hàng

27 tháng 1 2023

vì sao câu b góc FCA=DBA?

8 tháng 5 2022

undefinedundefined

20 tháng 2 2017
Ý b . Xét tam giác ABE & tam giác ADB Có : góc BAD chung ; Góc ABE = góc BDA ( cùng chắn cung BE ) Suy ra 2 tam giác đồng dạng theo trường hợp g.g => AB/AD = AE/AB => AB^2 = AE.AD
20 tháng 2 2017

( Bạn tự vẽ hình né . )_

Gọi M là trung điểm của OA 

Xét tam giác OBA vuông tại B có BM là đường trung tuyến ứng với cạnh huyền OA 

=> OM = MA = MB 

Cntt trong tam giác COA : ta được : OM = MC= MA

từ đó suy ra :  MA = MB = MC = MO 

Suy ra. 4 điểm cùng thuộc đtron tâm M 

23 tháng 5 2016

c) *MOHD nội tiếp (cmb) \(\Rightarrow\)^DHB = ^DOM Mà ^DHM +^BHD=180 và ^DOM +^EOD =180 => ^EOD = ^BHD  

  Mặt khác, ^EOD =^BQD (OM // BQ) => ^BHD = ^BQD => BHQD nội tiếp.

=>đpcm

                                                         

23 tháng 5 2016

d) Kéo dài BQ cắt AC tại J

Cm Q là trung điểm BJ (đường trung bình)

Cm \(\frac{EO}{BQ}\)\(=\)\(\frac{OF}{QJ}\)(\(=\)\(\frac{AO}{AQ}\)\(\Rightarrow\)Đpcm

17 tháng 2 2020

Câu hỏi của TRẦN PHAN ĐỨC MINH - Toán lớp 9 - Học toán với OnlineMath

a) Xét (O) có 

ΔACD nội tiếp đường tròn(A,C,D\(\in\)(O))

AD là đường kính(gt)

Do đó: ΔACD vuông tại C(Định lí)

Suy ra: AC\(\perp\)CD tại C

hay \(EC\perp CD\) tại C

Xét tứ giác ECDF có 

\(\widehat{EFD}\) và \(\widehat{ECD}\) là hai góc đối

\(\widehat{EFD}+\widehat{ECD}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: ECDF là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)