Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì abcd, ab, ac là số nguyên tố nên là số lẻ hay b,c,d lẻ và khác 5.Ta có:
b^2=cd+b-c
<=> b^2-1=10c+d-c
<=> b.(b-1)=9c+d lớn hơn hoặc bằng 10
=> b lớn hơn hoặc bằng 4
=> b=7 hoặc b=9
- Với b=7 ta có: 9c+d=42 => d chia hết cho 3
=> d=3 hoặc d=9
+, Nếu d=3 thì c=39/9 ko thuộc N (loại)
+, Nếu d=9 thì c=33/9 ko thuộc N (loại)
- Với b=9 thì 9c+d=72 => d=9, c=7
a9 và a7 là số nguyên tố thì a=1
Vậy abcd=1979
Ta có: b2 =cd + b -c <=>b2 - b =10.c + d -c <=>b. ( b-1) = 9.c +d
Vì 9.c + d \(\ge\)10 => b.(b-1) \(\ge\)10 => b \(\ge\)4 mà \(\hept{\begin{cases}b\le9\\\overline{ab}\in N\end{cases}\Rightarrow\orbr{\begin{cases}b=7\\b=9\end{cases}}}\)
+, Nếu b =7 => 9.c+d =42 =>\(\hept{\begin{cases}d⋮3\\abcd\in P\end{cases}}\)=>\(\hept{\begin{cases}d=3\\d=9\end{cases}}\)
+,Với d = 3 => c= \(\frac{42-3}{9}=\frac{39}{9}\notinℕ\left(L\right)\)
+,Với d =9 => c = \(\frac{42-9}{9}=\frac{33}{9}\notinℕ\)
+,Nếu b = 9 => 9.c + d = 72
=> d\(⋮\)9 => d= 9
+, Với d = 9 => 9.c + 9 = 72 => 9.c = 63 => c = 7
\(^∗\))Với \(\hept{\begin{cases}b=9\\c=7\\d=9\end{cases}}\)=> a = 1
=> Ta có số 1979
Vậy số cần tìm có dạng abcd là 1979
b^2=cd+b-c=10c+d+b-c
b^2=9c+b+d
b(b+1)=9c+d (b,c phai le=> d phai le)
9c+d<=27=> b<5=> b=(1,3)
TH1": b=1 => 2=9c+d=> loai b=1
TH2: b=3=> 12=9c+d=> d phai chia het cho 3=> d=(3.9); d=9=> 12=9(c+1) loai d=9
=> d=3; c=1
a3; a1 nguyen to=> a=1,4,7
ds: 1313;4313;7313