K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2021

c, Ta có : \(2x^2+2x+3x+3=0\)

\(\Leftrightarrow2x\left(x+1\right)+3\left(x+1\right)=0\)

\(\Leftrightarrow\left(2x+3\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=-1\end{matrix}\right.\)

Vậy ...

d, Ta có : \(\dfrac{3-2x}{2006}+\dfrac{3-2x}{2007}+\dfrac{3-2x}{2008}=\dfrac{3-2x}{2009}+\dfrac{3-2x}{2010}\)

\(\Leftrightarrow\dfrac{3-2x}{2006}+\dfrac{3-2x}{2007}+\dfrac{3-2x}{2008}-\dfrac{3-2x}{2009}-\dfrac{3-2x}{2010}=0\)

\(\Leftrightarrow\left(3-2x\right)\left(\dfrac{1}{2006}+\dfrac{1}{2007}+\dfrac{1}{2008}-\dfrac{1}{2009}-\dfrac{1}{2010}\right)=0\)

\(\Leftrightarrow3-2x=0\)

\(\Leftrightarrow x=\dfrac{3}{2}\)

Vậy ...

a) Ta có: \(\left(3x-2\right)\left(4x+3\right)=\left(2-3x\right)\left(x-1\right)\)

\(\Leftrightarrow\left(3x-2\right)\left(4x+3\right)-\left(2-3x\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left(3x-2\right)\left(4x+3\right)+\left(3x-2\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left(3x-2\right)\left(4x+3+x-1\right)=0\)

\(\Leftrightarrow\left(3x-2\right)\left(5x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-2=0\\5x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=2\\5x=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-\dfrac{2}{5}\end{matrix}\right.\)

Vậy: \(S=\left\{\dfrac{2}{3};-\dfrac{2}{5}\right\}\)

b) Ta có: \(x^2+\left(x+3\right)\left(5x-7\right)=9\)

\(\Leftrightarrow x^2+5x^2-7x+15x-21-9=0\)

\(\Leftrightarrow6x^2+8x-30=0\)

\(\Leftrightarrow6x^2+18x-10x-30=0\)

\(\Leftrightarrow6x\left(x+3\right)-10\left(x+3\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(6x-10\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\6x-10=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\6x=10\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\dfrac{5}{3}\end{matrix}\right.\)

Vậy: \(S=\left\{-3;\dfrac{5}{3}\right\}\)

30 tháng 10 2021

b) Bạn đã chứng minh được tứ giác EKFC là hình bình hành ở câu a, mà EF cắt CK tại I \(\Rightarrow\)I là trung điểm EF (tính chất hình bình hành)

\(\Rightarrow AI\)là trung tuyến của \(\Delta AEF\)

Mà \(\Delta AEF\)vuông tại A \(\Rightarrow AI=\frac{1}{2}EF\)(tính chất tam giác vuông)

Lại có \(EI=\frac{1}{2}EF\)do I là trung điểm của đoạn EF \(\Rightarrow AI=EI\left(=\frac{1}{2}EF\right)\)

Mặt khác \(BE\perp AF\)\(MI\perp AF\left(gt\right)\)\(\Rightarrow BE//MI\)(quan hệ từ vuông góc đến song song)

Mà tứ giác BEFD là hình bình hành \(\Rightarrow BD//EF\)(tính chất hình bình hành)

\(\Rightarrow BM//EI\)(vì \(M\in BD;I\in EF\))

Xét tứ giác BEIM có \(BE//MI\left(cmt\right);BM//EI\left(cmt\right)\)\(\Rightarrow\)Tứ giác BEIM là hình bình hành (định nghĩa)

\(\Rightarrow BM=EI\)(tính chất hình bình hành)

Mà \(AI=EI\left(cmt\right)\)\(\Rightarrow AI=BM\left(=EI\right)\left(đpcm\right)\)

c) Do tứ giác BEFD là hình bình hành \(\Rightarrow\hept{\begin{cases}BE//DF\\BE=DF\end{cases}}\)(tính chất hình bình hành)

Mà \(\hept{\begin{cases}BE\perp CF\\BE=CF\end{cases}}\left(gt\right)\Rightarrow\hept{\begin{cases}DF\perp CFtạiF\\DF=CF\end{cases}}\)\(\Rightarrow\)F nằm trên đường trung trực của đoạn CD và \(\Delta CDF\)vuông cân tại F

\(\Rightarrow\widehat{DCF}=45^0\)

\(\Delta ABC\)vuông cân tại A (gt) \(\Rightarrow\widehat{ACB}=45^0\)

 \(\Rightarrow\widehat{BCD}=180^0-\widehat{ACB}-\widehat{DCF}=180^0-45^0-45^0=90^0\)

\(\Rightarrow\Delta BCD\)vuông tại C.

Xét hình thang BEFD (BE//DF) ta có I là trung điểm EF (cmt) và IM//BE (cmt) \(\Rightarrow\)M là trung điểm của đoạn BD

\(\Rightarrow\)CM là trung tuyến của \(\Delta BCD\)

Mặt khác \(\Delta BCD\)vuông tại C \(\Rightarrow CM=\frac{1}{2}BD\)(tính chát tam giác vuông)

Mà \(DM=\frac{1}{2}BD\)do M là trung điểm BD \(\Rightarrow DM=CM\left(=\frac{1}{2}BD\right)\)

\(\Rightarrow\)M nằm trên đường trung trực của đoạn CD.

Mà F cũng nằm trên đường trung trực của đoạn CD (cmt)

\(\Rightarrow\)MF là đường trung trực của đoạn CD \(\Rightarrow\)C đối xứng với D qua MF (đpcm)

8 tháng 9 2021

a, \(A=x\left(2x^2-3-5x^2-x+x\right)=x\left(-3x-3\right)\)\(=-3x\left(x+1\right)\)

b, \(B=3x^2-6x-5x+5x^2-8x^2+24\)\(=-9x+24\)

C, \(C=x\left(2x^4-x^2-4x^4-2x^2+x-2x+6x^2\right)\)\(=x\left(-2x^4+3x^2-x\right)=-2x^5+3x^3-x^2\)

Chúc học tốt !

Lm ko chép lại đề 

33.

\(x^{10}+x^5+1\\ =x^{10}+x^9+x^8-x^9-x^8-x^7+x^7+x^6+x^5-x^6-x^5-x^4+x^5+x^4+x^3-x^3-x^2-x+x^2+x+1\\ =x^8\left(x^2+x+1\right)-x^7\left(x^2+x+1\right)+x^5\left(x^2+x+1\right)-x^4\left(x^2+x+1\right)+x^3\left(x^2+x+1\right)-x\left(x^2+x+1\right)+\left(x^2+x+1\right)\\ \left(x^2+x+1\right)\left(x^8-x^7+x^5-x^4+x^3-x+1\right)\)

34.

đặt: \(t=x^2+x+1,5\)

khi đó:

\(\left(x^2+x+1\right)\left(x^2+x+2\right)-12\\ =\left(t-0,5\right)\left(t+0,5\right)-12\\ =t^2-0,25-12\\ =t^2-12,25\\ =\left(t-3,5\right)\left(t+3,5\right)\\ =\left(x^2+x-2\right)\left(x^2+x+5\right)\)

35.

\(\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)+1\\ =\left(x^2-5x+4\right)\left(x^2-5x+6\right)+1\\ =\left(x^2-5x+5-1\right)\left(x^2-5x+5+1\right)+1\\ =\left(x^2-5x+5\right)^2-1+1\\ =\left(x^2-5x+5\right)^2\)

36.

\(\left(x-2\right)\left(x-4\right)\left(x-6\right)\left(x-8\right)+15\\ =\left(x^2-10x+16\right)\left(x^2-10x+24\right)+15\\ =\left(x^2-10x+20-4\right)\left(x^2-10x+20+4\right)+15\\ =\left(x^2-10x+20\right)^2-4^2+15\\ =\left(x^2-10x+20\right)^2-1\\ =\left(x^2-10x+19\right)\left(x^2-10x+21\right)\)

37.

\(\left(x-2\right)\left(x-4\right)\left(x-6\right)\left(x-8\right)+16\\ =\left(x^2-10x+16\right)\left(x^2-10x+24\right)+16\\ =\left(x^2-10x+20-4\right)\left(x^2-10x+20+4\right)+16\\ =\left(x^2-10x+20\right)^2-4^2+16\\ =\left(x^2-10x+20\right)^2\)

38.

\(\left(x^2+3x+2\right)\left(x^2+7x+12\right)-24\\ =\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24\\ =\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24\\ =\left(x^2+5x+5-1\right)\left(x^2+5x+5+1\right)-24\\ =\left(x^2+5x+5\right)^2-1-24\\ =\left(x^2+5x+5\right)^2-5^2\\ =\left(x^2+5x+10\right)\left(x^2+5x\right)\\ =x\left(x+5\right)\left(x^2+5x+10\right)\)

39.

\(\left(x^2+3x+2\right)\left(x^2+7x+12\right)+1\\ =\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)+1\\ =\left(x^2+5x+4\right)\left(x^2+5x+6\right)+1\\ =\left(x^2+5x+5-1\right)\left(x^2+5x+5+1\right)+1\\ =\left(x^2+5x+5\right)^2-1+1\\ =\left(x^2+5x+5\right)^2\)

40.

\(a^2b^2\left(a-b\right)-c^2b^2\left(c-b\right)+a^2c^2\left(c-a\right)\\ =a^3b^2-a^2b^3-c^3b^2+c^2b^3+a^2c^2\left(c-a\right)\\ =b^2\left(a^3-c^3\right)+b^3\left(c^2-a^2\right)+a^2c^2\left(c-a\right)\\ =b^2\left(a-c\right)\left(a^2+ac+c^2\right)+b^3\left(c-a\right)\left(c+a\right)+a^2c^2\left(c-a\right)\\ =-b^2\left(c-a\right)\left(a^2+ac+c^2\right)+\left(c-a\right)\left(cb^3+ab^3+a^2c^2\right)\\ =\left(c-a\right)\left(cb^3+ab^3+a^2c^2-a^2b^2-acb^2-b^2c^2\right)\)

42.

\(ab\left(b-a\right)-bc\left(b-c\right)-ac\left(c-a\right)\\ =ab^2-a^2b-b^2c+bc^2-ac\left(c-a\right)\\ =b^2\left(a-c\right)+b\left(c^2-a^2\right)-ac\left(c-a\right)\\ =\left(a-c\right)\left(b^2-ac+ba+bc\right)\)

24 tháng 7 2021

mik nhầm nha toán lớp 7

24 tháng 7 2021

\(a,\left|x+3,4\right|+\left|x+2,4\right|+\left|x+7,2\right|=4x\)

\(\left|x+3,4\right|\ge0;\left|x+2,4\right|\ge0;\left|x+7,2\right|\ge0\)

\(< =>\left|x+3,4\right|+\left|x+2,4\right|+\left|x+7,2\right|>0\)

\(< =>4x>0\)

\(x>0\)

\(\hept{\begin{cases}\left|x+3,4\right|=x+3,4\\\left|x+2,4\right|=x+2,4\\\left|x+7,2\right|=x+7,2\end{cases}}\)

\(x+3,4+x+2,4+x+7,2=4x\)

\(x=13\left(TM\right)\)

\(b,3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}\)

\(3^n.27+3^n.3+2^n.8+2^n.4\)

\(3^n.30+2^n.12\)

\(\hept{\begin{cases}3^n.30⋮6\\2^n.12⋮6\end{cases}}\)

\(< =>3^n.30+2^n.12⋮6< =>VP⋮6\)

DD
6 tháng 10 2021

Bài 3: 

a) \(\left(2-3x\right)^2-\left(3-x\right)^2=\left[\left(2-3x\right)-\left(3-x\right)\right]\left[\left(2-3x\right)+\left(3-x\right)\right]\)

\(=\left(-1-2x\right)\left(5-4x\right)\)

b) \(49\left(x-3\right)^2-9\left(x+2\right)^2\)

\(=\left[7\left(x-3\right)\right]^2-\left[3\left(x+2\right)\right]^2\)

\(=\left[\left(7x-21\right)-\left(3x+6\right)\right]\left[\left(7x-21\right)+\left(3x+6\right)\right]\)

\(=\left(4x-27\right)\left(10x-15\right)\)

c) \(2xy-x^2-y^2+16=16-\left(x-y\right)^2=\left(16-x+y\right)\left(16+x-y\right)\)

d) \(2\left(x-3\right)+3\left(x^2-9\right)=2\left(x-3\right)+3\left(x-3\right)\left(x+3\right)\)

\(=\left(x-3\right)\left(3x+11\right)\)

e) \(16x^2-\left(x^2+4\right)^2=\left(4x-x^2-4\right)\left(4x+x^2+4\right)\)

\(=-\left(x-2\right)^2\left(x+2\right)^2\)

f) \(1-2x+2yz+x^2-y^2-z^2=\left(x-1\right)^2-\left(y-z\right)^2\)

\(=\left(x-1-y+z\right)\left(x-1+y-z\right)\)

DD
6 tháng 10 2021

Bài 5: 

a) \(x^2+4x-5=x^2-x+5x-5=x\left(x-1\right)+5\left(x-1\right)=\left(x+5\right)\left(x-1\right)\)

b) \(2x^2-14x+20=2x^2-4x-10x+20=2x\left(x-2\right)-10x\left(x-2\right)=2\left(x-5\right)\left(x-2\right)\)

c) \(3x^2+8x+5=3x^2+3x+5x+5=3x\left(x+1\right)+5\left(x+1\right)=\left(3x+5\right)\left(x+1\right)\)

d) \(6x^2-xy-7y^2=6x^2+6xy-7xy-7y^2=6x\left(x+y\right)-7y\left(x+y\right)\)

\(=\left(6x-7y\right)\left(x+y\right)\)

DD
6 tháng 10 2021

Bài 4: 

a) \(x^3-6x^2+12x-8=x^3-2.3.x^2+3.2^2.x-2^3=\left(x-2\right)^3\)

b) \(\left(x-1\right)^3+\left(3-x\right)^3=\left(x-1+3-x\right)\left[\left(x-1\right)^2-\left(x-1\right)\left(3-x\right)+\left(3-x\right)^2\right]\)

\(=2\left(x^2-2x+1+x^2-4x+3+x^2-6x+9\right)\)

\(=2\left(3x^2-12x+13\right)\)

c) \(x^3+y^3+z^3-3xyz=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\)

\(=\left(x+y+z\right)^3-3z\left(x+y\right)\left(x+y+z\right)-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left[\left(x+y+z\right)^2-3xy-3yz-3zx\right]\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)

30 tháng 6 2016

\(B=\sqrt{371^2}+2\sqrt{31^2}-\sqrt{121^2}=371+2.31-121=371+62-121=312\)