K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2022

giúp mình đi 

gấp lắm r

31 tháng 3 2022

 \(S< \dfrac{1}{1.2}+\dfrac{1}{2.3}+....+\dfrac{1}{99.100}\)

\(=1-\dfrac{1}{100}=\dfrac{99}{100}< 1\)

Chọn A

8 tháng 4 2022

`Answer:`

 \(S=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{31}+\frac{1}{32}\)

a) Ta thấy:

\(\frac{1}{3}+\frac{1}{4}>\frac{1}{4}+\frac{1}{4}=\frac{1}{2}\)

\(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}>\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}=\frac{1}{2}\)

\(\frac{1}{9}+...+\frac{1}{16}>8.\frac{1}{16}=\frac{1}{2}\)

\(\frac{1}{17}+\frac{1}{18}+...+\frac{1}{32}>16.\frac{1}{32}=\frac{1}{2}\)

\(\Rightarrow S>\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=\frac{5}{2}\)

b) Ta thấy:

\(\frac{1}{3}+\frac{1}{4}+\frac{1}{5}< 3.\frac{1}{3}\)

\(\frac{1}{6}+...+\frac{1}{11}< 6.\frac{1}{6}\)

\(\frac{1}{12}+...+\frac{1}{23}< 12.\frac{1}{12}\)

\(\frac{1}{24}+...+\frac{1}{32}< 9.\frac{1}{24}\)

\(\Rightarrow S< \frac{1}{2}+1+1+1+\frac{9}{24}=\frac{31}{8}< \frac{9}{2}\)

26 tháng 7 2019

\(S=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}\)

\(\frac{1}{2^2}< \frac{1}{1\cdot2}\)\(\frac{1}{3^2}< \frac{1}{2\cdot3}\)\(\frac{1}{4^2}< \frac{1}{3\cdot4}\); ....; \(\frac{1}{9^2}< \frac{1}{8\cdot9}\)

\(\Rightarrow S< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{8\cdot9}\)

\(\Rightarrow S< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}\)

\(\Rightarrow S< 1-\frac{1}{9}\)

\(\Rightarrow S< \frac{8}{9}\)    (1)

\(\frac{1}{2^2}>\frac{1}{2\cdot3};\frac{1}{3^2}>\frac{1}{3\cdot4};\frac{1}{4^2}>\frac{1}{4\cdot5};...;\frac{1}{9^2}>\frac{1}{9\cdot10}\)

\(\Rightarrow S>\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{9\cdot10}\)

\(\Rightarrow S>\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\)

\(\Rightarrow S>\frac{1}{2}-\frac{1}{10}\)

\(\Rightarrow S>\frac{2}{5}\)   (2)

(1)(2) => 2/5 < S < 8/9

26 tháng 7 2019

\(\frac{1}{a}-\frac{1}{a+1}=\frac{a+1-a}{a\left(a+1\right)}=\frac{1}{a\left(a+1\right)}< \frac{1}{a^2}\)

\(\frac{1}{a}-1-\frac{1}{a}=-1< \frac{1}{a^2}\) Vì \(\frac{1}{a^2}>0;-1< 0\)

Khi đó thì ĐỀ SAI

24 tháng 7 2018

\(S=\frac{1}{3.3}+\frac{1}{4.4}+\frac{1}{5.5}+...+\frac{1}{20.20}\)

Ta có:  \(\frac{1}{2}-\frac{1}{3}>\frac{1}{3.3}>\frac{1}{3}-\frac{1}{4}\)

           \(\frac{1}{3}-\frac{1}{4}>\frac{1}{4.4}>\frac{1}{4}-\frac{1}{5}\)

          \(\frac{1}{4}-\frac{1}{5}>\frac{1}{5.5}>\frac{1}{5}-\frac{1}{6}\)

           ...................................

           \(\frac{1}{19}-\frac{1}{20}>\frac{1}{20.20}>\frac{1}{20}-\frac{1}{21}\)

Cộng theo vế ta được:

\(\frac{1}{2}-\frac{1}{20}>S>\frac{1}{3}-\frac{1}{21}\)\(\Rightarrow\)\(\frac{1}{2}>S>\frac{1}{4}\)

12 tháng 12 2016

a. Đ ; b.Đ ; c.S ; d.Đ ; e.S ; f.S ; g. Đ ; h.S ; i. S ; j. Đ

12 tháng 12 2016

a) Đ

b) Đ

c) S

d) Đ

e) S

f) S

g) Đ

h) S

i) S

j) Đ