Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 4:
a)
\(M=x+\sqrt{2-x}=-\left(2-x\right)+\sqrt{2-x}+2\)
Đặt \(\sqrt{2-x}=m\left(m\ge0\right)\)
\(\Rightarrow M=-m^2+m+2\)
\(=-\left(m^2-m+\dfrac{1}{4}\right)+\dfrac{1}{4}+2\)
\(=\dfrac{9}{4}-\left(m-\dfrac{1}{2}\right)^2\le\dfrac{9}{4}\)
Dấu "=" xảy ra khi \(m=\dfrac{1}{2}\Leftrightarrow\sqrt{2-x}=\dfrac{1}{2}\Leftrightarrow x=\dfrac{7}{4}\)
b)
\(5x^2+9y^2-12xy+8=24\left(2y-x-3\right)\)
\(\Leftrightarrow5x^2+24x+9y^2-48y-12xy+80=0\)
\(\Leftrightarrow\left(4x^2+9y^2+64-12xy-48y+32x\right)+\left(x^2-8x+16\right)=0\)
\(\Leftrightarrow\left(2x-3y+8\right)^2+\left(x-4\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=\dfrac{16}{3}\end{matrix}\right.\) (loại)
Vậy . . .
Bài 2:
a)
\(M=\dfrac{x^5}{30}-\dfrac{x^3}{6}+\dfrac{2x}{15}\)
\(=\dfrac{x^5-5x^3+4x}{30}\)
\(=\dfrac{x\left(x^4-5x^2+4\right)}{30}\)
\(=\dfrac{x\left(x^2-4\right)\left(x^2-1\right)}{30}\)
\(=\dfrac{x\left(x-2\right)\left(x-1\right)\left(x+1\right)\left(x+2\right)}{30}\)
Suy ra nếu x nguyên thì M cũng nguyên ^.^
Bài 3:
a) Chứng minh \(VP\ge VT\) dùng Cauchy Shwarz dạng Engel.
b) Xét \(M=2a^2+2b^2+2\)
\(=\left(a^2+1\right)+\left(b^2+1\right)+\left(a^2+b^2\right)\)
\(\ge2a+2b+2ab\) (áp dụng bđt AM - GM)
\(\Rightarrow a^2+b^2+1\ge a+b+ab\left(\text{đ}pcm\right)\)
Bài 1:
a)
\(A=\left(\dfrac{\sqrt{x}}{2}-\dfrac{1}{2\sqrt{x}}\right)\left(\dfrac{x-\sqrt{x}}{\sqrt{x}+1}-\dfrac{x+\sqrt{x}}{\sqrt{x}-1}\right)\) ĐKXĐ: x >1
\(=\left(\dfrac{2\sqrt{x}.\sqrt{x}}{2.2\sqrt{x}}-\dfrac{2}{2.2\sqrt{x}}\right)\left(\dfrac{\left(x-\sqrt{x}\right)\left(\sqrt{x}-1\right)}{\left(x-1\right)^2}-\dfrac{\left(x+\sqrt{x}\right)\left(\sqrt{x}+1\right)}{\left(x-1\right)^2}\right)\\ =\left(\dfrac{2x-2}{4\sqrt{x}}\right)\left(\dfrac{x\sqrt{x}-x-x+\sqrt{x}-x\sqrt{x}-x-x-\sqrt{x}}{\left(x-1\right)^2}\right)\\ =\left(\dfrac{x-1}{2\sqrt{x}}\right)\left(\dfrac{-4x}{\left(x-1\right)^2}\right)\\ =\dfrac{\left(x-1\right).\left(-4x\right)}{2\sqrt{x}.\left(x-1\right)^2}=\dfrac{-2\sqrt{x}}{x-1}\)
b)
Với x >1, ta có:
A > -6 \(\Leftrightarrow\dfrac{-2\sqrt{x}}{x-1}>-6\Rightarrow-2\sqrt{x}>-6\left(x-1\right)\)
\(\Leftrightarrow-2\sqrt{x}+6x-6>0\\ \Leftrightarrow x-\dfrac{2}{6}\sqrt{x}-1>0\\ \Leftrightarrow x-2.\dfrac{1}{6}\sqrt{x}+\left(\dfrac{1}{6}\right)^2>1+\dfrac{1}{36}\\ \Leftrightarrow\left(\sqrt{x}-\dfrac{1}{6}\right)^2>\dfrac{37}{36}\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{6}-\sqrt{x}>\dfrac{\sqrt{37}}{6}\\\sqrt{x}-\dfrac{1}{6}>\dfrac{\sqrt{37}}{6}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}-\sqrt{x}>\dfrac{\sqrt{37}-1}{6}\\\sqrt{x}>\dfrac{\sqrt{37}+1}{6}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}-x>\dfrac{19-\sqrt{37}}{18}\\x>\dfrac{19+\sqrt{37}}{18}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x< \dfrac{\sqrt{37}-19}{18}\\x>\dfrac{19+\sqrt{37}}{18}\end{matrix}\right.\)
Vậy không có x để A >-6
Bài 1 :
\(a,2\sqrt{50}-3\sqrt{72}+\sqrt{98}=2\sqrt{2.25}-3\sqrt{2.36}+\sqrt{2.49}=10\sqrt{2}-18\sqrt{2}+7\sqrt{2}\) = \(-\sqrt{2}\)
\(b,\sqrt{\left(3-\sqrt{5}\right)^2}-\sqrt{\left(\sqrt{5}-\sqrt{7}\right)^2}+\sqrt{28}\) = \(\left|3-\sqrt{5}\right|-\left|\sqrt{5}-\sqrt{7}\right|+\sqrt{7.4}=3-\sqrt{5}-\sqrt{5}+\sqrt{7}+2\sqrt{7}=3-2\sqrt{5}+3\sqrt{7}\)
\(c,\sqrt{7-4\sqrt{3}}+\sqrt{7+4\sqrt{3}}=\sqrt{3-2.2\sqrt{3}+4}+\sqrt{3+2.2\sqrt{3}+4}=\)\(\sqrt{\left(\sqrt{3}-2\right)^2}+\sqrt{\left(\sqrt{3}+2\right)^2}=\left|-\left(2-\sqrt{3}\right)\right|+\left|\sqrt{3}+2\right|=2-\sqrt{3}+\sqrt{3}+2=4\)