Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 6 :
Ta có hệ phương trình : \(\left\{{}\begin{matrix}x+2y=n\left(I\right)\\2x-3y=5\left(II\right)\end{matrix}\right.\)
- Từ ( I ) ta có phương trình :\(x+2y=n\)
=> \(x=n-2y\left(III\right)\)
- Thay x = n - 2y vào phương trình (II ) ta được : \(2\left(n-2y\right)-3y=5\)
=> \(2n-4y-3y=5\)
=> \(-7y=5-2n\)
=> \(y=\frac{5-2n}{-7}=\frac{2n-5}{7}\)
- Thay \(y=\frac{2n-5}{7}\) vào phương trình ( III ) ta được : \(x=n-\frac{2\left(2n-5\right)}{7}\)
=> \(x=\frac{7n}{7}-\frac{4n-10}{7}\)
=> \(x=\frac{3n-10}{7}\)
Ta có : \(\left\{{}\begin{matrix}x< 0\\y>0\end{matrix}\right.\) ( IV )
- Thay \(x=\frac{3n-10}{7}\), \(y=\frac{2n-5}{7}\) vào hệ bất phương trình ( IV ) ta được : \(\left\{{}\begin{matrix}\frac{3n-10}{7}< 0\\\frac{2n-5}{7}>0\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}3n-10< 0\\2n-5>0\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}3n< 10\\2n>5\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}n< \frac{10}{3}\\n>\frac{5}{2}\end{matrix}\right.\)
=> \(\frac{5}{2}< n< \frac{10}{3}\)
Vậy để phương trình trên có nghiệm (x, y ) thỏa mãn x <0, y > 0 thì \(\frac{5}{2}< n< \frac{10}{3}\)
Bài 2:
a: (d): y=ax+b
Theo đề, ta có:
\(\left\{{}\begin{matrix}a\sqrt{2}+b=1\\a\cdot0+b=3\sqrt{2}+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=3\sqrt{2}+1\\a=\dfrac{1-b}{\sqrt{2}}=\dfrac{1-3\sqrt{2}-1}{\sqrt{2}}=-3\end{matrix}\right.\)
b: Tọa độ giao của (d1) và (d2) là:
2/5x+1=-x+4 và y=-x+4
=>7/5x=3và y=-x+4
=>x=15/7 và y=-15/7+4=13/7
Vì (d) đi qua B(15/7;13/7) và C(1/2;-1/4)
nên ta có hệ:
15/7a+b=13/7 và 1/2a+b=-1/4
=>a=59/46; b=-41/46
Đáp án D
Ta có hai đường thẳng d: y = (2m - 4)x + 5 và d': 2x - y - 3 = 0 hay d': y = 2x - 3
Mà d // d' ⇒ 2m - 4 = 2 (1)
Mặt khác, d có hệ số góc là 2m – 4 và d’ có hệ số góc là 2 (2)
Từ (1) và (2) ⇒ hệ số góc của d là 2