Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(2a^2-3ab+b^2\)
=\(a^2+a^2-2ab-ab+b^2\)
=\(\left(a-b\right)^2+a\left(a-b\right)\)
=\(\left(a-b\right)\left(2a-b\right)\)
b)\(x^2-7x-30\)
=\(x^2-10x+3x-30\)
=\(x\left(x-10\right)+3\left(x-10\right)\)
=\(\left(x-10\right)\left(x+3\right)\)
c)\(6a^2-5ab-6b^2\)
=\(6a^2-9ab+4ab-6b^2\)
=\(3a\left(2a-3b\right)+2b\left(2a-3b\right)\)
=\(\left(2a-3b\right)\left(3a+2b\right)\)
d)\(a^4+a^2+1\)
=\(a^4+2a^2-a^2+1\)
=\(\left(a^2+1\right)^2-a^2\)
=\(\left(a^2+1-a\right)\left(a^2+1+a\right)\)
e)\(x^3+6x^2+11x+6\)
=\(x\left(x^2+6x+9+2\right)+6\)
\(=x\left(\left(x+3\right)^2+2\right)+6\)
=\(x\left(x+3\right)^2+2x+6\)
=\(x\left(x+3\right)^2+2\left(x+3\right)\)
=\(\left(x+3\right)\left(x^2+3x+2\right)\)
Phân tích đa thức thành nhân tử
A= x2 - 20x - 125
B= 12x2 -2x -4
C= 3a2 -5ab - 12b2
D = 25ab - 6a2 + 9b2
A = x2 - 20x - 125
= x2 + 5x - 20x - 125
= x( x + 5 ) - 25( x + 5 )
= ( x + 5 )( x - 25 )
B = 12x2 - 2x - 4
= 12x2 + 6x - 8x - 4
= 6x( x + 2 ) - 4( x + 2 )
= ( x + 2 )( 6x - 4 )
C = 3a2 - 5ab - 12b2
= 3a2 - 9ab + 4ab - 12b2
= 3a( a - 3b ) + 4b( a - 3b )
= ( a - 3b )( 3a + 4b )
D = 25ab - 6a2 + 9b2
= 9b2 + 27ab - 2ab - 6a2
= 9b( b + 3a ) - 2a( b + 3a )
= ( b + 3a )( 9b - 2a )
1.a^3-7a-6
<=>x^3+2x^2-2x^2-4x-3x-6
<=>x^2-2x-3(x+2)=(x^2+x-3x-3)(x+2)
<=>[(x-3)(x+1)](x+2)
<=>(x-3)(x+1)(x+2)=0
<=>x-3=0 <=>x=3 hoặc x+1=0<=>x=-1 hoặc x+2=0<=>x=-2
2. a(b+c)^2+b(c+a)^2+c(a+b)^2-4abc
=a(b^2+2bc+c^2)+b(c^2+2ca+a^2)+c(a^2+2ab+b^2)-4abc
=ab^2+2abc+ac^2+bc^2+2abc+ba^2+ca^2+2abc+b^2-4abc
=ab^2+bc^2+ca^2+cb^2+6abc-4abc
=ab^2+bc^2+ca^2+cb^2+2abc
=a^3+b^3+c^3+2abc
\(a,a^3-7a-6\)
\(\Leftrightarrow a^3+a^2-a^2-a-6a-6\)
\(\Leftrightarrow a^2\left(a+1\right)-a\left(a+1\right)-6\left(a+1\right)\)
\(\Leftrightarrow\left(a+1\right)\left(a^2-a-6\right)\)
\(\left(x+1\right)\left(x+2\right)\left(x-3\right)\)
\(b,a^3+4a^2-7a-10\)
\(\Leftrightarrow a^3+5a^2-a^2-5a-2a-10\)
\(\Leftrightarrow a^2\left(a+5\right)-a\left(a+5\right)-2\left(a+5\right)\)
\(\Leftrightarrow\left(a+5\right)\left(a+1\right)\left(a-2\right)\)
\(d,\left(a^2+a\right)^2+4\left(a^2+a\right)-12\)
Đặt a^2+a=y ta có
y^2+4y-12=(y+6)(y-2)
<=> (a^2+a+6)(a^2+a-2)
<=> (a^2+a+6)(x-1)(x+2)
\(a.\left(b^2+c^2+bc\right)+b.\left(c^2+a^2+ac\right)+c.\left(a^2+b^2+ab\right)\)
\(=ab^2+ac^2+abc+bc^2+ba^2+bac+ca^2+cb^2+cab\)
\(=\left(ab^2+ba^2+abc\right)+\left(ac^2+ca^2+bac\right)+\left(bc^2+cb^2+cab\right)\)
\(=ab.\left(b+a+c\right)+ac.\left(c+a+b\right)+bc.\left(c+b+a\right)\)
\(=\left(a+b+c\right).\left(ab+ac+bc\right)\)
(Nhớ click cho mình với nhoa!)
ta có: \(\left(a+b+c\right)^2+\left(a+b-c\right)^2-4c^2=\left(a+b+c\right)^2+\left(a+b-c-2c\right)\left(a+b-c+2c\right).\)
\(=\left(a+b+c\right)^2+\left(a+b-3c\right)\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a+b+c+a+b-3c\right)\)
\(=2\left(a+b+c\right)\left(a+b-c\right)\)
(a+b+c)^2+(a+b-c)^2-4c^2
=(a^2+b^2+c^2+2ab+2bc+2ac)+(a^2-2ab+b^2-2ac+c^2-abc)-4c^2
=a^2+b^2+c^2+2ab+2bc+2ac+a^2-2ab+b^2-2ac+c^2-abc-4c^2
=(a^2+a^2)+(b^2+b^2)+(c^2+c^2)+(2ab-2ab)+(2bc-2bc)+(2ac-2ac)-4c^2
=2a^2+2b^2+2c^2-4c^2
=(2a^2+2b^2)+(2c^2-4c^2)
=2*(a^2+b^2)+2c^2*(1-2)
d,=(2bc+b2+c2−a2)(2bc−b2−c2+a2)
=[(b+c)2−a2][−(b+c)2+a2]
=(b+c−a)(b+c+a)2(a−b−c)
\(a^2-b^2+4bc-4c^2\)
\(=a^2-\left(b^2-4bc+4c^2\right)\)
\(=a^2-\left(b-2c\right)^2\)
\(=\left(a-b+2c\right)\left(a+b-2c\right)\)
a, Sửa đề :
\(a^2+b^2-ac+2ab-bc\)
\(=\left(a+b\right)^2-c\left(a+b\right)=\left(a+b\right)\left(a+b-c\right)\)
b, \(\frac{1}{4}a^2b-bc^4=b\left(\frac{1}{4}a^2-c^4\right)=b\left(\frac{1}{2}a-c^2\right)\left(\frac{1}{2}a+c^2\right)\)
a) \(a^2+ab-7a-7b=a\left(a+b\right)-7\left(a+b\right)=\left(a+b\right)\left(a-7\right)\)
b) \(5ab+4c+20b+ac=5b\left(a+4\right)+c\left(a+4\right)=\left(a+4\right)\left(5b+c\right)\)
c) \(a^2+6a-b^2+9=\left(a+3\right)^2-b^2=\left(a+b-b\right)\left(a+3+b\right)\)
d) \(a^2-16=\left(a-4\right)\left(a+4\right)\)