Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt tên các bộ ba lần lượt là A, B, ... như sau:
111 (A), 112 (B), 113 (C), 121 (D), 122 (E), 123 (F), 131 (G), 132 (H), 133 (I), 211 (J), 212 (K), 213 (L), 221 (M), 222 (N), 223 (O), 231 (P), 232 (Q), 233 (R), 311 (S), 312 (T), 313 (U), 321 (V), 322 (X), 323 (Y), 331 (Z), 332 (W), 333 (@)
Ta cần tìm dãy ngắn nhất chứa tất cả 27 bộ ba trên. Để tìm được dãy như vậy, ta sắp xếp lại các bộ ba trên sao cho hai chữ số cuối của bộ ba trước trùng với hai chữ số đầu của bộ ba sau. Một ví dụ là:
111 (A) , 112 (B), 121 (D), 211 (J), 113 (C), 131 (G), 312 (T), 122 (E), 221 (M), 212 (K), 123 (F), 231 (P), 313 (U), 132 (H), 321 (V), 213 (L), 133 (I), 332 (W), 322 (X), 222 (N), 223 (O), 232 (Q), 323 (Y), 233 (R), 333 (@), 331 (Z), 311 (S)
Sau đó loại bỏ 2 chữ số trùng nhau của các bộ ba kề nhau:
111, 112, 121, 211, 113, 131, 312, 122, 221, 212, 123, 231, 313, 132, 321, 213, 133, 332, 322, 222, 223, 232, 323, 233, 333, 331, 311
Cuối cùng ta được dãy 29 chữ số sau chứa tất cả các bộ ba có thể có của mật khẩu ba chữ số:
11121131221231321332223233311
Chú ý: dãy 29 chữ số không phải là duy nhất, tùy thuộc vào bộ ba đầu tiên và cách sắp xếp của mỗi người.
Đặt tên các bộ ba lần lượt là A, B, ... như sau:
111 (A), 112 (B), 113 (C), 121 (D), 122 (E), 123 (F), 131 (G), 132 (H), 133 (I), 211 (J), 212 (K), 213 (L), 221 (M), 222 (N), 223 (O), 231 (P), 232 (Q), 233 (R), 311 (S), 312 (T), 313 (U), 321 (V), 322 (X), 323 (Y), 331 (Z), 332 (W), 333 (@)
Ta cần tìm dãy ngắn nhất chứa tất cả 27 bộ ba trên. Để tìm được dãy như vậy, ta sắp xếp lại các bộ ba trên sao cho hai chữ số cuối của bộ ba trước trùng với hai chữ số đầu của bộ ba sau. Một ví dụ là:
111 (A) , 112 (B), 121 (D), 211 (J), 113 (C), 131 (G), 312 (T), 122 (E), 221 (M), 212 (K), 123 (F), 231 (P), 313 (U), 132 (H), 321 (V), 213 (L), 133 (I), 332 (W), 322 (X), 222 (N), 223 (O), 232 (Q), 323 (Y), 233 (R), 333 (@), 331 (Z), 311 (S)
Sau đó loại bỏ 2 chữ số trùng nhau của các bộ ba kề nhau:
111, 112, 121, 211, 113, 131, 312, 122, 221, 212, 123, 231, 313, 132, 321, 213, 133, 332, 322, 222, 223, 232, 323, 233, 333, 331, 311
Cuối cùng ta được dãy 29 chữ số sau chứa tất cả các bộ ba có thể có của mật khẩu ba chữ số:
11121131221231321332223233311
Chú ý: dãy 29 chữ số không phải là duy nhất, tùy thuộc vào bộ ba đầu tiên và cách sắp xếp của mỗi người.
cách làm chi tiết bài số 7 nhá.ta dự đoán(theo kinh nghiệm khi giải mấy bài cơ bản kiểu này) là khi người 2 bốc bao nhiêu thì người 1 bốc x- số người 2 vừa bốc.làm thế thì CHO DÙ NGƯỜI 2 BỐC BAO NHIÊU THÌ TỔNG 1 LƯỢT VẪN LÀ X.vì vậy chúng ta sẽ đưa người 2 vào vòng lặp này bằng lần bốc đầu và chiến thắng bằng lần x cuối cùng.vì bốc từ 11-20 nên ta phải chọn x(ta có thể chọn x) sao cho người 2 bốc bao nhiêu ta vx bốc đc x- số đó.vì vậy x phải là 11+20=31.vì vậy lượt đầu ta bốc 5 viên.còn lại ng 2 bốc bao nhiêu thì ta bốc 31- bấy nhiêu thì ta thắng vì 2015 chia hết cho 31
bài số 8 nhé.ko thể.bàn cờ mất 2 ô ở 2 góc chéo nên ko mất tính tổng quát giả sử mất 2 ô màu trắng.nhận xét cho dù có xếp 1x2 như thế nào thì cx che hết 1 ô đen và 1 ô trắng.vì vậy để che hết bàn cờ chứng tỏ nếu che 32 ô đen(toàn bộ ô đen trên bàn cờ) thì cx PHẢI che mất 32 ô trắng.nhưng thực tế có 30 ô trắng vì vậy ko thể.
hình như 1 số bài thiếu thông tin???
Ta tìm được số còn lại ở hàng ngang thứ hai là: 14 - 9 - 2 = 3.
Vậy các số có thể tiếp tục dùng là : 1, 4, 5, 6, 7, 8.
Ở cột thứ hai, tổng hai ô còn lại bằng 6 nên hai số có thể điền là 5 và 1.
Trường hợp 1:
Các số còn lại: 4,6,7,8
2 số còn lại của cột 3 có tổng bằng 12 nên nó có thể là 4 và 8. 8 phải ở hàng thứ ba vì 5 > 1.
Từ đó ta hoàn thiện được bảng:
Trường hợp 2:
Các số còn lại: 4,6,7,8
2 số còn lại của cột 3 có tổng bằng 12 nên nó có thể là 4 và 8. 8 phải ở hàng thứ nhất vì 5 > 1.
Từ đó ta hoàn thiện được bảng: