Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\dfrac{n+2}{3+2}=\dfrac{n+2}{5}=\dfrac{3\left(n+2\right)}{3.5}=\dfrac{3n+6}{15}< \dfrac{11}{15}\)
\(\Rightarrow3n+6< 11\) \(\Rightarrow3n< 5\)
mà n là số tự nhiên \(\Rightarrow3n\in\left\{0;3\right\}\) \(\Rightarrow n\in\left\{0;1\right\}\)
Vậy \(n\in\left\{0;1\right\}\)
Chúc bạn học tốt
Xét hai trường hợp b nguyên dương và b nguyên âm
Xét b nguyên dương . Vì a,b cùng dấu nên a nguyên dương.Ta có : \(\frac{a}{b}>\frac{0}{b}=0\). Vậy \(\frac{a}{b}\)là số hữu tỉ dương
Xét b nguyên âm . Vì a,b cùng dấu nên a nguyên âm => -a nguyên dương . Do đó : \(\frac{a}{b}=\frac{-a}{-b}>\frac{0}{-b}=0\). Vậy \(\frac{a}{b}\)là số hữu tỉ dương.
Tóm lại \(\frac{a}{b}\)là số hữu tỉ dương nếu a và b cùng dấu
Tương tự nếu a và b khác dấu thì \(\frac{a}{b}\)là số hữu tỉ âm
do a,b binh dang ,coi b> 0
a) ab cung dau
=> a duong = > a> 0
=> a/b > o/b = 0
=> a b la so huu ti duong neu a,b cung dau[1]
b) do a khac dau =>a am > a< 0
=> a/b < 0/b=0
=> am neu a,b khac dau [2]
tu 1 va 2 => dpcm
a) Nếu a;b cùng dấu => a; b cùng dương hoặc a;b cùng âm
+) a;b cùng dương => a/b dương
+) a;b cùng âm => a/b dương
Vậy a/b là số hữu tỉ dương
b) Nếu a;b trái dấu => a dương;b âm hoặc a âm và b dương
cả 2 trường hợp a/b đều < 0
=> a/b là số hữu tỉ âm
Em có cách giải này, nhờ mí anh chị hay bạn xem zùm e, có j sai sửa giúp e nha!
Do a/b < c/d và b>0 ; d>0 suy ra ad< bc ( 1)
Cộng thêm ad vào 2 vế của ( 1) ta được:
ad + ad < bc + ad
=> a( b+d) < b ( a+ c )
=> a/b < a+c/b+c ( 2)
Cộng thêm cd vào 2 vế của ( 2) ta được:
ad + cd < bc + cd
=> ( a+ c) b < ( b+ d ) c
=> a+c/b+d < c/d ( 3)
Từ ( 2) và ( 3) ta có: a/b < a+c/b+d < c/d hay x< z< y
b) Ta có:
-1/5 < -1/6 => -1/5 < -2/11 < -1/6
-1/5 < -2/11 => -1/5 < - 3/16 < -2/11
-1/5 < -3/16 => -1/5 < -4/21 < -3/16
-1/5 < -4/21 => -1/5 < -4/21 < -3/16
Vậy -1/5 < -4/21 < -3/16 < -2/11 < -1/6
Nhờ mấy ah cj xem zùm rùi cho em biết còn thiếu gì ko! Thanks nhìu ạ <3
a, Nếu a và b cùng dấu:
+ a và b cùng dương => \(\frac{a}{b}\)dương
+ a và b cùng âm => \(\frac{a}{b}\)dương
=> Nếu a và b cùng dấu thì \(\frac{a}{b}\)dương (đpcm)
b, Nếu a và b khác dấu:
+ a dương; b âm => \(\frac{a}{b}\)âm
+ a âm; b dương => \(\frac{a}{b}\)âm
=> Nếu a và b khác dấu thì \(\frac{a}{b}\)âm (Đpcm)