Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có quy ước a^0=1
vậy ta có :
1^0=1
2^0=1
<=>1^0=2^0 <=>1=2
hok tốt
câu: 2.1=7 3.1=4
2.2=3 3.2=9
2.3=1 3.3 điền dấu <
2.4=7 3.4=3
2.5=3 3.5=4
2.6=1
2.7=1
2.8=7
2.9=3
2.10=3
bài 1: 1 < 2 < 3 < 4 < 5 < 6
2.1 : 7 - 6 + 6 + 0 = 3 + 6 - 2
2.2 : 10 - 1 - 1 = 4 - 2 + 3 + 3
2.3 : 2 + 7 - 1 - 2 = 4 + 3 + 1 + 2
2.4 : 9 - 1 -2 = 9 - 7 + 4
2.5 : 10 - 4 + 2 = 4 - 2 + 3 + 3
vậy thôi nhé ! tk nhé !
1] nắng ba năm chưa hề bỏ bạn là cái gì- là bóng
2] hãy chứng minh 4 chia 3 bằng 2-4chia ba 3 là tứ chia tam tứ chia tam là tám chia tư bằng 2
3] làm sao để cái cân tự cân chính nó Lật ngược nó lại
4] hãy chứng minh con gái bằng con dê Con gái là thần tiên, thần tiên là tiền thân, tiền thân là trước khỉ, mà trước khỉ là dê.
5]hai người đào trong 2 giờ thì được một cái họ hỏi 1 người đào trong 1 giờ được mấy cái hố Một cái hố (nhưng nhỏ hơn cái hố có 2 người đào)
Bạn xòe bàn tay ra rồi lấy 1 ngón thêm với 1 ngón là bạn biết vì sao 1+1=2 rồi
Nếu đúng thì h cho mình nha mình đang bị âm điểm
1/
\(P=\frac{3}{xy+yz+zx}+\frac{2}{x^2+y^2+z^2}=\frac{2}{xy+yz+xz}+\frac{1}{xy+yx+xz}+\frac{2}{x^2+y^2+z^2}\)\
\(\ge\frac{2}{\frac{\left(x+y+z\right)^2}{3}}+\frac{\left(2\sqrt{2}\right)^2}{\left(x+y+z\right)^2}=14\)
Ta thấy dấu bằng xảy ra khi \(\hept{\begin{cases}x=y=z=\frac{1}{3}\\\frac{1}{xy+yz+xz}=\frac{\sqrt{2}}{x^2+y^2+z^2}\end{cases}}\)
Hai điều kiện không thể đồng thời xảy ra nên không tồn tại dấu bằng. Vậy P > 14
1) vì x,y,z là các số bất kì, ta có bđt luôn đúng: (x+y+z)2 \(\ge\)3(xy+yz+zx)
vì x+y+z=1 nên suy ra \(\frac{1}{xy+yz+zx}\ge3\)
đẳng thức xảy ra khi và chỉ khi \(x=y=z=\frac{1}{3}\)
ta có \(\frac{1}{3\left(xy+yz+zx\right)}+\frac{1}{x^2+y^2+z^2}\ge\frac{4}{\left(x+y+z\right)^3}=4\)
\(\Rightarrow\frac{3}{xy+yz+zx}+\frac{2}{x^2+y^2+z^2}=\frac{4}{2\left(xy+yz+zx\right)}+\frac{2}{2\left(xy+yz+zx\right)}+\frac{2}{x^2+y^2+z^2}\)\(\ge2\cdot3+2\cdot4=14\)
đẳng thức xảy ra khi và chỉ khi \(\hept{\begin{cases}x=y=z=\frac{1}{3}\\2\left(xy+yz+zx\right)=x^2+y^2+z^2\end{cases}}\)
hệ này vô nghiệm nên bât không trở thành đẳng thức
vậy bất đẳng thức được chứng minh
2) ta có \(\frac{x^3}{y^3+8}+\frac{y+2}{27}+\frac{y^2-2y+4}{27}\ge\frac{x}{3}\Rightarrow\frac{x^3}{y^3+8}\ge\frac{9x+y-y^2-6}{27}\)
tương tự ta có: \(\frac{y^3}{z^3+8}\ge\frac{9y+z-z^2-6}{27},\frac{z^3}{x^3+8}\ge\frac{9z+x-x^2-6}{27}\)nên
\(VT\ge\frac{10\left(x+y+z\right)-\left(x^2+y^2+z^2\right)-18}{27}=\frac{12-\left(x^2+y^2+z^2\right)}{27}\)mà ta lại có
\(\frac{12-\left(x^2+y^2+z^2\right)27}{27}=\frac{3+\left(x+y+z\right)^2-\left(x^2+y^2+z^2\right)}{27}=\frac{1}{9}+\frac{2}{27}\left(xy+yz+zx\right)\)
từ đó ta có điều phải chứng minh, đẳng thức xảy ra khi x=y=z=1
con lạy cụ tổ
Nhìn vào cũng biết