K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

khoảng hơn 100 tập vì chưa biết ai đứng đầu tổ chức áo đen mừ

theo mik là bố conan hoặc asaga

22 tháng 2 2017

Em ne !

21 tháng 1 2019

50 bạn dó

31 tháng 3 2020

gọi số học sinh là x(hs;x∈N*)
số ghế dài là y(ghế;y∈N*)
vì khi xếp mỗi ghế 3 học sinh thì 6 học sinh không có ghế ngồi
nên ta có phương trình x -3y = 6(1)
vì xếp mỗi ghế 4 học sinh thì thừa 1 ghế
ta có pt x = 4(y-1)
<=> x - 4y = -4(2)
từ (1)(2)ta có hpt
x-3y=6 và x-4y = -4 <=> x =36 ; y=10(tm)

a) Trong đường tròn nhỏ:

AB > CD => OH < OK (định lí 3)

b) Trong đường tròn lớn:

OH < OK => ME > MF (định lí 3)

c) Trong đường tròn lớn:

ME > MF => MH > MK

30 tháng 4 2021

a) Xét trong đường tròn nhỏ:

Theo định lí 22: trong hai dây của một đường tròn, dây nào lớn hơn thì dây đó gần tâm hơn.

Theo giả thiết AB>CDAB>CD suy ra ABAB gần tâm hơn, tức là  OH<OKOH<OK.

b) Xét trong đường tròn lớn:

Theo định lí 22: trong hai dây của một đường tròn, dây nào gần tâm hơn thì dây đó lớn hơn.

Theo câu aa, ta có: OH<OKME>MFOH<OK⇒ME>MF.

c) Xét trong đường tròn lớn:

Vì OHMEEH=MH=ME2OH⊥ME⇒EH=MH=ME2 (Định lý 2 - trang 103).

Vì OKMFKF=MK=MF2OK⊥MF⇒KF=MK=MF2 (Định lý 2 - trang 103). 

Theo câu bb, ta có: ME>MFME2>MF2MH>MK

2 tháng 3 2016

420 số bạn nhé

2 tháng 3 2016

420 số bạn nhé

Với $x>9$ ta có:$m(\sqrt{x}-3)P>x+1\Leftrightarrow 4mx>x+1$$\Leftrightarrow (4m-1)x>1$ $(*)$*) Nếu $4m-1=0$ thì $(*)\Leftrightarrow 0>1$ (Vô lý)*) Nếu $4m-1<0$ thì $(*)\Leftrightarrow x<\dfrac{1}{4m-1}$Đặt $\dfrac{1}{4m-1}=\alpha$ thì $x<\alpha$ và $x>9$Vậy thì $9<x<\alpha$$\Rightarrow$ Tập nghiệm của bất phương trình $(*)$ không chứahết các giá trị $x>9$(Vẽ trục số ra bạn sẽ thấyTa thấy $9<x<\alpha$ tức là $x$ bị chặn ở 1 khoảng...
Đọc tiếp

Với $x>9$ ta có:

$m(\sqrt{x}-3)P>x+1\Leftrightarrow 4mx>x+1$

$\Leftrightarrow (4m-1)x>1$ $(*)$

*) Nếu $4m-1=0$ thì $(*)\Leftrightarrow 0>1$ (Vô lý)

*) Nếu $4m-1<0$ thì $(*)\Leftrightarrow x<\dfrac{1}{4m-1}$

Đặt $\dfrac{1}{4m-1}=\alpha$ thì $x<\alpha$ và $x>9$

Vậy thì $9<x<\alpha$

$\Rightarrow$ Tập nghiệm của bất phương trình $(*)$ không chứa

hết các giá trị $x>9$

(Vẽ trục số ra bạn sẽ thấy

Ta thấy $9<x<\alpha$ tức là $x$ bị chặn ở 1 khoảng từ $9$ tới $\alpha $

Mà tập nghiệm của BPT là $x$ bị chặn ở 1 khoảng từ $9$ tới dương vô cùng

Vì vậy TH1 đã không chứa hết $x>9$) 

Trường hợp này bị loại

*) Nếu $4m-1>0$ thì $(*)\Leftrightarrow x>\dfrac{1}{4m-1}$

Lập luận giống TH2 thì ta có:

$\dfrac{1}{4m-1}\leq 9$

(Đặt $\dfrac{1}{4m-1}=\alpha $ thì $x>\alpha $ và $x>9$

$\Rightarrow \alpha \leq 9$ thì tập nghiệm của BPT mới có thể bao gồm toàn bộ $x>9$)

Nhớ là $4m-1>0$ nữa

1
3 tháng 3 2020

Ghi cái quần què gì thế