Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
D: “∃ x ∈ R: 3x = x2 + 1”
D− : “∀ x ∈ R ; 3x ≠ x2 + 1”
D− sai vì với
D− thỏa mãn:
Bình phương của mọi số thực đều dương.
– Mệnh đề này sai vì nếu x = 0 thì x2 = 0.
Sửa cho đúng: ∀ x ∈ R : x2 ≥ 0.
B: “∃ x ∈ Q : x2 = 2”.
B− : “∀ x ∈ Q : x2 ≠ 2”
B− đúng.
Lưu ý: √2 là số vô tỷ.
a: Có 1 giá trị x thuộc tập R thỏa mãn x^2=-10
Mệnh đề này sai vì x^2>=0>-10 với mọi x thuộc R
b: Với mọi x thực, x^2+x+12 luôn khác 0
x^2+x+12
=x^2+x+1/4+47/4
=(x+1/2)^2+47/4>=47/4>0 với mọi x
=>Mệnh đề này đúng
c: Với mọi x thuộc R thì x^2 luôn ko lớn hơn 0
Mệnh đề này sai vì ví dụ như x=1 thì 1^2>0 chứ ko bé hơn 0
d: Có một giá trị thực của x thỏa mãn x^2<=0
Mệnh đề này đúng bởi vì có x=0 thỏa mãn x^2<=0
e:
Có một giá trị x thực thỏa mãn x^2+x+5>0
Mệnh đề này đúng vì x^2+x+5=(x+1/2)^2+19/4>0 với mọi x
f: Với mọi giá trị x thực thì x^2+x+5 luôn dương
Mệnh đề này đúng
C: “∀ x ∈ R : x < x + 1”.
C− : “∃ x ∈ R: x ≥ x + 1”.
C− sai vì x + 1 luôn lớn hơn x.
a) Mệnh đề sai, vì \(x = 0 \in \mathbb{R}\) nhưng \({0^2}\) không lớn hơn 0.
Mệnh đề phủ định của mệnh đề này là: “\(\exists x \in \mathbb{R},{x^2} \le 0\)”
b) Mệnh đề đúng, vì \(x = 1 \in \mathbb{R}\) thỏa mãn \({1^2} = 5.1 - 4\)
Mệnh đề phủ định của mệnh đề này là: “\(\forall x \in \mathbb{N},{x^2} \ne 5x - 4\)”
c) Mệnh đề sai, vì \(2x + 1 = 0 \Leftrightarrow x = - \frac{1}{2} \notin \mathbb{Z}\)
Mệnh đề phủ định của mệnh đề này là: “\(\forall x \in \mathbb{Z},2x + 1 \ne 0\)”
Lời giải:
a. Mệnh đề sai, vì $x^2\geq 0>-1$ với mọi $x\in\mathbb{R}$ theo tính chất bình phương 1 sosos.
Mệnh đề phủ định: $\forall x\in\mathbb{R}, x^2\neq -1$
b. Mệnh đề đúng, vì $x^2+x+2=(x+0,5)^2+1,75>0$ với mọi $x\in\mathbb{R}$ nên $x^2+x+2\neq 0$ với mọi $x\in\mathbb{R}$
Mệnh đề phủ định: $\exists x\in\mathbb{R}| x^2+x+2=0$