K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 1 2017

Đề kiểm tra Toán 9 | Đề thi Toán 9

a) Xét tam giác ABC có:

A B 2 + A C 2 = 6 2 + 8 2  = 100 = B C 2

Tam giác ABC vuông tại A.

6 tháng 7 2019

Đề kiểm tra Toán 9 | Đề thi Toán 9

a) Xét tam giác ABC vuông tại A có:

B C 2 = A B 2 + A C 2 = 6 2 + 8 2  = 100

⇒ BC = 10 (cm)

Đề kiểm tra Toán 9 | Đề thi Toán 9

∠B + ∠C = 90 0  ⇒ ∠C = 90 0 - 53 , 1 0  = 36 , 9 0

7 tháng 3 2019

Đề kiểm tra Toán 9 | Đề thi Toán 9

a) Xét tam giác ABC vuông tại A có:

A B 2 + A C 2 = B C 2  ⇒ Đề kiểm tra Toán 9 | Đề thi Toán 9

Ta có:

AH.BC = AB.AC ⇒ Đề kiểm tra Toán 9 | Đề thi Toán 9

sin⁡B = AC/BC = 4/5 ⇒ ∠B = 53 , 1 0

⇒ ∠C = 90 0 - ∠B = 36 , 9 0

17 tháng 11 2021

\(a,BC^2=AB^2+AC^2\Rightarrow\Delta ABC\) vuông tại A

\(b,\sin B=\dfrac{AC}{BC}=\dfrac{3}{5}\approx\sin37^0\Rightarrow\widehat{B}\approx37^0\\ \Rightarrow\widehat{C}=90^0-\widehat{B}\approx53^0\\ AH=\dfrac{AB\cdot AC}{BC}=3,6\left(cm\right)\\ c,S_{ABC}=\dfrac{1}{2}AB\cdot AC=\dfrac{1}{2}\cdot6\cdot4,5=13,5\)

17 tháng 11 2021

a. \(\left\{{}\begin{matrix}sinC=\dfrac{AB}{BC}=53^0\\sinB=\dfrac{AC}{BC}\approx37^0\end{matrix}\right.\)

\(\Rightarrow A=180^0-\left(C+B\right)=180^0-\left(53^0+37^0\right)=90^0\left(tong3goctrong1tg\right)\)

Vậy tg ABC vuông tại A

25 tháng 10 2021

b: Xét ΔBAC vuông tại B có BH là đường cao

nên \(HA\cdot HC=BH^2\left(1\right)\)

Xét ΔBHC vuông tại H có HE là đường cao

nên \(BE\cdot BC=BH^2\left(2\right)\)

Từ (1) và (2) suy ra \(HA\cdot HC=BE\cdot BC\)

26 tháng 10 2021

Giải dùm em câu d nữa ạ

 

13 tháng 12 2020

                                   Giải

a.   Xét \(\Delta ABC\) ta có :

      \(AB^2+AC^2=\) \(6^2+4,5^2=56,25\) (cm)

       \(BC^2=7,5^2=56,25\) (cm)

  \(\Rightarrow\) \(\Delta ABC\) là tam giác vuông

b.   - Áp dụng hệ thức về một số cạnh và đường cao trong tam giác vuông ta có :

          AB.AC = BC.AH

     \(\Leftrightarrow6.4,5=7,5.AH\)

     \(\Leftrightarrow AH=\dfrac{6.4,5}{7,5}\)

     \(\Leftrightarrow AH=3.6\) (cm)

   - Trong \(\Delta ABH\perp H\) ta có :

      sin B = \(\dfrac{AH}{AB}=\dfrac{3,6}{6}=0,6\)

      \(\Rightarrow\) Góc B \(\approx\) \(37\) độ

      \(\Rightarrow\) Góc C = 53 độ

   Vậy AH = 3,6cm, góc B = 37 độ, góc C = 53 độ

 

3 tháng 3 2017

Đề kiểm tra Toán 9 | Đề thi Toán 9

a) Xét tứ giác AEHD có:

∠(AEH) =  90 0

∠(ADH) =  90 0

⇒∠(AEH) + ∠(ADH) =  180 0

⇒ Tứ giác AEHD là tứ giác nội tiếp.

NV
25 tháng 7 2021

a.

\(AB^2+AC^2=4,5^2+6^2=56,25\)

\(BC^2=7,5^2=56,25\)

\(\Rightarrow AB^2+AC^2=BC^2\Rightarrow\Delta ABC\) vuông tại A theo Pitago đảo

b.

Theo định lý phân giác: \(\dfrac{DB}{DC}=\dfrac{AB}{AC}=\dfrac{3}{4}\Rightarrow DB=\dfrac{3}{4}DC\)

Mà \(DB+DC=BC=7,5\)

\(\Rightarrow\dfrac{3}{4}DC+DC=7,5\Rightarrow DC=\dfrac{30}{7}\left(cm\right)\)

Do DN và AB cùng vuông góc AC \(\Rightarrow DN||AB\)

Áp dụng định lý Talet:

\(\dfrac{DN}{AB}=\dfrac{DC}{BC}=\dfrac{4}{7}\Rightarrow DN=\dfrac{4}{7}AB=\dfrac{18}{7}\left(cm\right)\)

Tứ giác AMDN là hình chữ nhật (có 3 góc vuông)

Mà AD là đường chéo đồng thời là phân giác theo giả thiết

\(\Rightarrow AMDN\) là hình vuông

\(\Rightarrow S_{AMDN}=DN^2=\dfrac{324}{49}\approx6,6\left(cm^2\right)\)

NV
25 tháng 7 2021

undefined

24 tháng 4 2017

Để học tốt Toán 9 | Giải bài tập Toán 9

Để học tốt Toán 9 | Giải bài tập Toán 9

b)Để SMBC = SABC thì M phải cách BC một khoảng bằng AH. Do đó M phải nằm bên trên hai đường thẳng song song với BC, cách BC một khoảng bằng 3,6cm.

24 tháng 4 2017

Lời giải:

Để học tốt Toán 9 | Giải bài tập Toán 9Để học tốt Toán 9 | Giải bài tập Toán 9

b)Để SMBC = SABC thì M phải cách BC một khoảng bằng AH. Do đó M phải nằm bên trên hai đường thẳng song song với BC, cách BC một khoảng bằng 3,6cm.

BÀI TẬP 18Cho tam giác ABC vuông tại A, đường cao AH. Vẽ đường tròn tâm O đường kính AH cắt AB, AC lầnlượt tại E và F. Biết AB=6cm , BC =10 cma) Tính AC , AHb) Chứng minh tứ giác AEHF là hình chữ nhậtc) Chứng minh AE.AB = AF. ACd) Gọi I, K lần lượt là trung điểm BH và HC. Chứng minh IE, KF là tiếp tuyến của đường tròn (O)BÀI TẬP 19Cho đường tròn (O; R), đường kính AB. Lấy điểm M thuộc (O) sao cho góc ABM nhỏ hơn...
Đọc tiếp

BÀI TẬP 18
Cho tam giác ABC vuông tại A, đường cao AH. Vẽ đường tròn tâm O đường kính AH cắt AB, AC lần
lượt tại E và F. Biết AB=6cm , BC =10 cm
a) Tính AC , AH
b) Chứng minh tứ giác AEHF là hình chữ nhật
c) Chứng minh AE.AB = AF. AC
d) Gọi I, K lần lượt là trung điểm BH và HC. Chứng minh IE, KF là tiếp tuyến của đường tròn (O)
BÀI TẬP 19
Cho đường tròn (O; R), đường kính AB. Lấy điểm M thuộc (O) sao cho góc ABM nhỏ hơn 45o. Vẽ dây
cung MN ⊥ AB. Tia BM cắt tia NA tại P. Gọi Q là điểm đối xứng với P qua đường thẳng AB. Gọi K là
giao điểm của PQ với AB.
1) Chứng minh các điểm P, K, A, M cùng thuộc một đường tròn.
2) Chứng minh ∆PKM cân.
3) Chứng minh KM là tiếp tuyến của (O).
4) Xác định vị trí của điểm M trên đường tròn (O) để tứ giác PKNM là hình thoi.
BÀI TẬP 20
Cho đường tròn (O; R), đường kính AB. Trên tiếp tuyến tại A của đường tròn (O) lấy điểm C sao cho
AC = 2R. Gọi D là giao điểm của BC với đường tròn (O).
1) Chứng minh: AD là trung tuyến của ∆ABC.
2) Vẽ dây cung AE ⊥ OC tại H. Chứng minh: CE là tiếp tuyến của đường tròn (O).
3) Đường thẳng BE cắt đường thẳng OD tại F. Tính số đo của góc OFB.
4) Gọi K là hình chiếu của điểm E xuống AB, M là giao điểm của EK với BC. Chứng minh: ME = MK.
Giúp mình với ạ. Mình đang cần gấp. Cảm ơn ạ

0