K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2018

Đáp án là C

OI = 8cm < R + r = 10 + 2 = 12 cm

⇒ Hai đường tròn (O) và (I) cắt nhau

26 tháng 4 2018

Đáp án là A

Toán lớp 9 cho siêu khó. Ai giải giúp em với sáng mai nộp mà còn kẹt lại 3 bài này @@Bài 1 : Ba đường tròn tâm I, K, H có bán kính bằng nhau và bằng R cùng đi qua một điểm O và từng đôi một cắt nhau tại điểm thứ hai là A, B, C. Chứng minh rằng :a) A, I, H, B là 4 đỉnh của 1 hình bình hànhb) Đường tròn đi qua 3 điểm A, B, C cũng có bán kính RBài 2 : Cho đường tròn tâm O, đường kính AB và một...
Đọc tiếp

Toán lớp 9 cho siêu khó. Ai giải giúp em với sáng mai nộp mà còn kẹt lại 3 bài này @@


Bài 1 : Ba đường tròn tâm I, K, H có bán kính bằng nhau và bằng R cùng đi qua một điểm O và từng đôi một cắt nhau tại điểm thứ hai là A, B, C. Chứng minh rằng :
a) A, I, H, B là 4 đỉnh của 1 hình bình hành
b) Đường tròn đi qua 3 điểm A, B, C cũng có bán kính R

Bài 2 : Cho đường tròn tâm O, đường kính AB và một điểm M di động trên nửa đường tròn. Vẽ đường tròn tâm E tiếp xúc với (O) tại M, tiếp xúc AB tại N. (E) cắt AM, MB tại điểm thứ hai lần lượt là C, D
a) Chứng minh CD // AB
b) Kẻ bán kính OK của (O) vuông góc với AB (K thuộc nửa mặt phẳng bờ AB không chứa M). Chứng minh M, N, K thẳng hàng

Bài 3 : Cho M, N là các giao điểm của hai đường tròn (O)(O'). Đường thẳng OM cắt (O), (O') lần lượt tại điểm thứ hai là A, B. Đường thẳng O'M cắt (O), (O') lần lượt tại điểm thứ hai là C, D. Chứng minh : ba đường thẳng AC, BD, MN đồng quy tại 1 điểm

0
22 tháng 5 2018

A B O C I P M K Q

a) Đường tròn (O) có đường kính AB và điểm C nằm trên cung AB => ^ACB=900 hay ^PCB=900

Xét tứ giác BCPI: ^PCB=900; ^PIB=900 => Tứ giác BCPI nội tiếp đường tròn (Tâm là trung điểm BP)

b) Xét \(\Delta\)AMB: AC\(\perp\)BM; MI\(\perp\)AB; AC cắt MI tại P => P là trực tâm của \(\Delta\)AMB

Dễ thấy: BK\(\perp\)AM => B;P;K là 3 điểm thẳng hàng (đpcm).

 c) Nhận xét: Khi BC=R thì BC=OC=OB=OA => \(\Delta\)ABC là tam giác nửa đều có ^CBA=600

=> ^ACO=300. Do AQ là tiếp tuyến của (O) nên ^ACO+^QCA=900 => ^QCA = 600 (1)

Theo t/c 2 tiếp tuyến cắt nhau => QA=QC (2)

Từ (1) và (2) => \(\Delta\)AQC là tam giác đều => AQ=AC

Dễ có: AC=\(\sqrt{3}R\)=> AQ=\(\sqrt{3}R\)

Xét \(\Delta\)MIB: ^MBI=600; ^MIB=900 => \(\Delta\)MIB là tam giác nửa đều => BI= BM/2

Để ý thấy I là trung điểm OA => BI=3/2R => BM = 2.3/2R = 3R

Dựa vào ĐL Pytagore, ta tính được: \(MI^2=9R^2-\frac{9}{4}R^2=R^2.\left(\frac{36-9}{4}\right)=\frac{R^2.27}{4}\)

\(\Rightarrow MI=\frac{\sqrt{27}.R}{2}\)

\(\Rightarrow S_{QAIM}=\frac{\left(\sqrt{3}R+\frac{\sqrt{27}R}{2}\right).\frac{R}{2}}{2}=\frac{R.\left(\sqrt{3}+\frac{3\sqrt{3}}{2}\right).\frac{R}{2}}{2}\)\(=\frac{R^2.\frac{5\sqrt{3}}{4}}{2}=\frac{5\sqrt{3}.R^2}{8}\)

Vậy \(S_{QAIM}=\frac{5\sqrt{3}.R^2}{8}\).

21 tháng 5 2021

chung minh amci noi tiep

 

9 tháng 8 2015

Tóm tắt thôi nhé

a) Các cạnh // => Hình bình hành

T/g OBE = t/g OCD (^B=^C=90*, OB=OC, ^BOE=^COD vì cùng phụ với EOD) => OE = OD (2 cạnh kề) => Hình thoi

b) Nối OO' => 2 tam giác cân cùng góc đáy => so le trong => //

c) 1] OO' là đường trung trực của AB => đường trung bình

2] CB//OO'

Cm tương tự 1] để được BD//OO' => Ơ-clit => thẳng hàng