K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2018

a)  ktra lại đề

b)  \(5x\left(x-y\right)-\left(y-x\right)=\left(x-y\right)\left(5x+1\right)\)

c)  \(x\left(x+3\right)+\left(3+x\right)=\left(x+3\right)\left(x+1\right)\)

f)  \(4x\left(x-2\right)-\left(2x\right)^2=4x^2-8x-4x^2=-8x\)

g)  \(\left(x-2\right)^2-\left(2-x\right)^3=\left(x-2\right)^2+\left(x-2\right)^3=\left(x-2\right)^2\left(x-1\right)\)

25 tháng 9 2018

Bài 1:

a) \(x^2-y^2+10x+25\)

\(=\left(x^2+10x+25\right)-y^2\)

\(=\left(x+5\right)^2-y^2\)

\(=\left(x+y+5\right)\left(x-y+5\right)\)

b) \(x^3-x^2-5x+125\)

\(=x^3+5x^2-6x^2-30x+25x+125\)

\(=x^2\left(x+5\right)-6x\left(x+5\right)+25\left(x+5\right)\)

\(=\left(x+5\right)\left(x^2-6x+25\right)\)

c) \(x^4+4y^4\)

\(=\left(x^2\right)^2+2x^22y^2+\left(2y^2\right)^2-2x^22y^2\)

\(=\left(x^2+2y^2\right)^2-\left(2xy\right)^2\)

\(=\left(x^2+2y^2-2xy\right)\left(x^2+2y^2+2xy\right)\)

d)Sửa đề \(a\left(b^2-c^2\right)+b\left(c^2-a^2\right)+c\left(a^2-b^2\right)\)

\(=a\left(b^2-c^2\right)-b\left[\left(b^2-c^2\right)+\left(a^2-b^2\right)\right]+c\left(a^2-b^2\right)\)

\(=a\left(b^2-c^2\right)-b\left(b^2-c^2\right)-b\left(a^2-b^2\right)+c\left(a^2-b^2\right)\)

\(=\left(a-b\right)\left(b^2-c^2\right)-\left(b-c\right)\left(a^2-b^2\right)\)

\(=\left(a-b\right)\left(b-c\right)\left(b+c\right)-\left(b-c\right)\left(a-b\right)\left(a+b\right)\)

\(=\left(a-b\right)\left(b-c\right)\left(b+c-a-b\right)\)

\(=\left(a-b\right)\left(b-c\right)\left(c-a\right)\)

e) \(7x^2-10xy+3y^2\)

\(=\left(\sqrt{7}x\right)^2-2.\sqrt{7}x.\sqrt{3}y+\left(\sqrt{3}y\right)^2\)

\(=\left(\sqrt{7}x-\sqrt{3}y\right)^2\)

f) Sửa đề \(a^3+b^3+c^3-3abc\)

\(=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)

\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+2ab-ac-bc+c^2\right)-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ac-bc+2ab-3ab\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ac-bc-ab\right)\)

h) \(xy\left(x+y\right)-yz\left(y+z\right)+xz\left(x-z\right)\)

\(=x^2y+xy^2-y^2z-yz^2+x^2z-xz^2\)

\(=\left(x^2y+x^2z\right)+\left(xy^2-xz^2\right)-yz\left(y+z\right)\)

\(=x^2\left(y+z\right)+x\left(y^2-z^2\right)-yz\left(y+z\right)\)

\(=x^2\left(y+z\right)+x\left(y+z\right)\left(y-z\right)-yz\left(y+z\right)\)

\(=\left(y+z\right)\left[x^2+x\left(y-z\right)-yz\right]\)

\(=\left(y+z\right)\left(x^2+xy-xz-yz\right)\)

\(=\left(y+z\right)\left[x\left(x+y\right)-z\left(x+y\right)\right]\)

\(=\left(y+z\right)\left(x+y\right)\left(x-z\right)\)

27 tháng 9 2018

ài 2 đâu bạn

16 tháng 12 2018

Câu 1:

a/ (-5x3)(2x2+3x-5)

=-10x5-15x4+25x3

b/(2x-1)x

=2x2-x

c/(x-y)(3x2+4xy)

=3x3+4x2y-3x2y-4xy2

=3x3 +x2y-4xy2

Câu 2:

a/ x3-2x2+x

=x(x2-2x+1)

=x(x-1)2

b/x2-x-12

=x2 +3x-4x-12

=(x2 +3x)+(-4x-12)

=x(x+3)-4(x+3)

=(x+3)(x-4)

c/ 2x-6

=2(x-3)

e/ x2+4x+4-y2

=(x2+4x+4)-y2

=(x+2)2-y2

=(x+2-y)(x+2+y)

d/ x2-2xy+y2-16

=(x2-2xy+y2)-16

=(x-y)2-16

=(x-y-4)(x-y+4)

Câu 3:

a: \(=\dfrac{5xy-4+3xy+4}{2x^2y^3}=\dfrac{8xy}{2x^2y^3}=\dfrac{4}{xy^2}\)

b: \(=\dfrac{y-12}{6\left(y-6\right)}+\dfrac{6}{y\left(y-6\right)}\)

\(=\dfrac{y^2-12y+36}{6y\left(y-6\right)}=\dfrac{y-6}{6y}\)

c: \(=\dfrac{3x+1-2x+3}{x+y}=\dfrac{x+4}{x+y}\)

d: \(=\dfrac{4x+7+5x+7}{9}=\dfrac{9x+14}{9}\)

e: \(=\dfrac{5\left(x+2\right)}{2\left(2x-1\right)}\cdot\dfrac{-2\left(x-2\right)}{x+2}=\dfrac{-5\left(x-2\right)}{2x-1}\)

30 tháng 8 2020

a) x2( x - 1 ) - x + 1

= x2( x - 1 ) - ( x - 1 )

= ( x - 1 )( x2 - 1 )

= ( x - 1 )( x - 1 )( x + 1 )

= ( x - 1 )2( x + 1 )

b) ( a + b )3 - ( a - b )3

= ( a3 + 3a2b + 3ab2 + b3 ) - ( a3 - 3a2b + 3ab2 - b3 )

= a3 + 3a2b + 3ab2 + b3 - a3 + 3a2b - 3ab2 + b3

= 6a2b + 2b3

= 2b( 3a2 + b )

c) 6x( x - 3 ) + 9 - 3x2

= 6x2 - 18x + 9 - 3x2

= 3x2 - 18x + 9

= 3( x2 - 6x + 3 )

d) x( x - y ) - 5x + 5y

= x( x - y ) - ( 5x - 5y )

= x( x - y ) - 5( x - y )

= ( x - y )( x - 5 )

e) 3( x + 4 ) - x2 - 4x

= 3( x + 4 ) - ( x2 + 4x )

= 3( x + 4 ) - x( x + 4 )

= ( x + 4 )( 3 - x )

f) x2 + 4x - y2 + 4

= ( x2 + 4x + 4 ) - y2

= ( x + 2 )2 - y2

= ( x + 2 - y )( x + 2 + y )

g) x2 + 5x

= x( x + 5 )

h) -x2 + 2x + 2y + y2

= ( y2 - x2 ) + ( 2x + 2y )

= ( y - x )( y + x ) + 2( x + y )

= ( x + y )( y - x + 2 )

17 tháng 11 2017

a) \(a^2x+a^2y-9x-9y\)

\(=\left(a^2x+a^2y\right)-\left(9x+9y\right)\)

\(=a^2\left(x+y\right)-9\left(x+y\right)\)

\(=\left(x+y\right)\left(a^2-9\right)\)

\(=\left(x+y\right)\left(a-3\right)\left(a+3\right)\)

b) \(x^2-x-12\)

\(=x^2-4x+3x-12\)

\(=\left(x^2-4x\right)+\left(3x-12\right)\)

\(=x\left(x-4\right)+3\left(x-4\right)\)

\(=\left(x-4\right)\left(x+3\right)\)

c) \(x^2\left(x-3\right)+12-4x\)

\(=x^2\left(x-3\right)-\left(4x-12\right)\)

\(=x^2\left(x-3\right)-4\left(x-3\right)\)

\(=\left(x-3\right)\left(x^2-4\right)\)

\(=\left(x-3\right)\left(x-2\right)\left(x+2\right)\)

d) \(4x\left(x-y\right)+6y\left(x-y\right)\)

\(=\left(x-y\right)\left(4x+6y\right)\)

\(=2\left(x-y\right)\left(2x+3y\right)\)

e) \(5\left(x+y\right)-xy-y^2\)

\(=5\left(x+y\right)-\left(xy+y^2\right)\)

\(=5\left(x+y\right)-y\left(x+y\right)\)

\(=\left(x+y\right)\left(5-y\right)\)

6 tháng 12 2017

a) \(=\left(x-2y\right)\left(x^2+5x\right)\)

b) \(=\left(x-1\right)\left(x^2+2x+1\right)=\left(x-1\right)\left(x+1\right)^2\)

c) \(=\left(x^2+1-2x\right)\left(x^2+1+2x\right)\)

    \(=\left(x^2-2x+1\right)\left(x^2+2x+1\right)\)

    \(=\left(x-1\right)^2\left(x+1\right)^2\)

d) \(=3\left(x+3\right)-\left(x-3\right)\left(x+3\right)\)

     \(=\left(x+3\right)\left(3-x+3\right)\)

     \(=\left(x+3\right)\left(6-x\right)\)

e) \(=\left(x^2-\frac{1}{3}x\right)\left(x^2+\frac{1}{3}x\right)\)

f) \(=2x\left(x-y\right)-16\left(x-y\right)\)

    \(=2\left(x-y\right)\left(x-8\right)\)

  

14 tháng 10 2020

\(=x^3+x^2-\left(4x+4\right)=x^2\left(x+1\right)-4\left(x+1\right)=\left(x^2-4\right)\left(x+1\right)\)
\(=\left(x-2\right)\left(x+1\right)\left(x+2\right)\)

\(x^4+x^3+x^2-1=x^3\left(x+1\right)+\left(x-1\right)\left(x+1\right)=\left(x+1\right)\left(x^3+x-1\right)\)

\(c,=\left(x+y\right)^2-2\left(x+y\right)+1=\left(x+y-1\right)^2\)

\(d,=x^2y^2-y^2-x^2+1=\left(x^2-1\right)\left(y^2-1\right)=\left(x-1\right)\left(y-1\right)\left(x+1\right)\left(y+1\right)\)

\(e,4x^2+4x-15=\left(4x^2+4x+1\right)-16=\left(2x+1\right)^2-4^2=\left(2x+5\right)\left(2x-3\right)\)

\(3x^2-7x+2=\left(3x^2-6x\right)-\left(x-2\right)=3x\left(x-2\right)-\left(x-2\right)=\left(3x-1\right)\left(x-2\right)\)

\(4x^2-5x+1=\left(4x^2-4x\right)-\left(x-1\right)=4x\left(x-1\right)-\left(x-1\right)=\left(4x-1\right)\left(x-1\right)\)

14 tháng 10 2020

Phân tích à :v

a) x3 + x2 - 4x - 4 = x2( x + 1 ) - 4( x + 1 ) = ( x + 1 )( x2 - 4 ) = ( x + 1 )( x - 2 )( x + 2 )

b) x4 + x3 + x2 - 1 = x3( x + 1 ) + ( x - 1 )( x + 1 ) = ( x + 1 )( x3 + x - 1 )

c) x2 + 2xy + y2 - 2x - 2y + 1 = ( x2 + 2xy + y2 ) - ( 2x + 2y ) + 1 = ( x + y )2 - 2( x + y ) + 12 = ( x + y - 1 )2

d) x2y2 + 1 - x2 - y2 = ( x2y2 - x2 ) - ( y2 - 1 ) = x2( y2 - 1 ) - ( y2 - 1 ) = ( y2 - 1 )( x2 - 1 ) = ( y - 1 )( y + 1 )( x - 1 )( x + 1 )

e) 4x2 + 4x - 15 = ( 4x2 + 4x + 1 ) - 16 = ( 2x + 1 )2 - 42 = ( 2x + 1 - 4 )( 2x + 1 + 4 ) = ( 2x - 3 )( 2x + 5 )

g) 3x2 - 7x + 2 = 3x2 - 6x - x + 2 = 3x( x - 2 ) - ( x - 2 ) = ( x - 2 )( 3x - 1 )

h) 4x2 - 5x + 1 = 4x2 - 4x - x + 1 = 4x( x - 1 ) - ( x - 1 ) = ( x - 1 )( 4x - 1 )

20 tháng 8 2018

bài 5 :

+) ta có : \(A=x^2-4x+18=x^2-4x+4+14\)

\(=\left(x-2\right)^2+14\ge14>0\forall x\Rightarrow\left(đpcm\right)\)

+) ta có : \(B=x^2-x+2=x^2-x+\dfrac{1}{4}+\dfrac{7}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}>0\forall x\Rightarrow\left(đpcm\right)\)

+) ta có : \(C=x^2+2y^2-2xy-2y+15=x^2-2xy+y^2+y^2-2y+1+14\)

\(=\left(x-y\right)^2+\left(y-1\right)^2+14\ge14>0\forall x\Rightarrow\left(đpcm\right)\)

bài 6 :

+) ta có : \(M=x^2-10x+3=x^2-10x+25-22=\left(x-5\right)^2-22\ge-22\)

\(\Rightarrow M_{min}=-22\) khi \(x=5\)

+) ta có : \(N=x^2+6x-5=x^2+6x+9-14=\left(x+3\right)^2-14\ge-14\)

\(\Rightarrow N_{min}=-14\) khi \(x=-3\)

+) ta có : \(P=x^2+y^2-4x+20=x^2-4x+4+y^2+16=\left(x-2\right)^2+y^2+16\ge16\)

\(\Rightarrow P_{min}=16\) khi \(\left\{{}\begin{matrix}x=2\\y=0\end{matrix}\right.\)

+) ta có : \(Q=x\left(x-3\right)=x^2-3x=x^2-3x+\dfrac{9}{4}-\dfrac{9}{4}=\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{4}\ge\dfrac{-9}{4}\)

\(\Rightarrow Q_{min}=\dfrac{-9}{4}\) khi \(x=\dfrac{3}{2}\)

bài 7 :

+) ta có : \(A=-x^2-12x+3=-\left(x^2+12x+36\right)+39=-\left(x+6\right)^2+39\le39\)

\(\Rightarrow A_{max}=39\) khi \(x=-6\)

+) ta có : \(B=-4x^2+4x+7=-\left(x^2-4x+4\right)+11=-\left(x-2\right)^2+11\le11\)

\(\Rightarrow B_{max}=11\) khi \(x=2\)

bài 8 :

a) ta có : \(16x^2-9=0\Leftrightarrow x^2=\dfrac{9}{16}\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=\dfrac{-3}{4}\end{matrix}\right.\)

b) ta có : \(\left(x-2\right)^2-x^2=4\Leftrightarrow x^2-4x+4-x^2-4=0\Leftrightarrow x=0\)

c) ta có : \(\left(2x-1\right)^2+\left(x+3\right)^2-5\left(x-7\right)\left(x+7\right)=0\)

\(\Leftrightarrow4x^2-4x+1+x^2+6x+9-5x^2+245=0\)

\(\Leftrightarrow2x+255=0\Leftrightarrow x=\dfrac{-255}{2}\)

d) ta có : \(\left(2x-3\right)^2-\left(2x+1\right)\left(2x-1\right)=16\)

\(\Leftrightarrow4x^2-12x+9-4x^2+1-16=0\Leftrightarrow-12x-6=0\Leftrightarrow x=\dfrac{-1}{2}\)

e) ta có : \(\left(x-2\right)\left(x+2\right)-x\left(x-2\right)=1\)

\(\Leftrightarrow x^2-4-x^2+2x-1=0\Leftrightarrow x=\dfrac{5}{2}\)

22 tháng 8 2018

thank you bạn nha