Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, \(a^6+b^3=\left(a^2+b\right)\left(a^4-a^2b+b^2\right)\)
2, \(x^2-10x+25=\left(x-5\right)^2\)
3, \(8x^3-\dfrac{1}{8}=\left(2x-\dfrac{1}{2}\right)\left(4x^2+x+\dfrac{1}{4}\right)\)
4, \(x^2+4xy+4y^2=\left(x+2y\right)^2\)
1) \(a^6+b^3=\left(a^2\right)^3+b^3=\left(a^2+b\right)\left(a^4-a^2b+b^2\right)\)
2) \(x^2-10x+25=\left(x-5\right)^2\)
3) \(8x^3-\dfrac{1}{8}=\left(2x\right)^3-\left(\dfrac{1}{3}\right)^3=\left(2x-\dfrac{1}{3}\right)\left(4x^2+\dfrac{2x}{3}+\dfrac{1}{4}\right)\)
4) \(x^2+4xy+4y^2=\left(x+2y\right)^2\)
\(a,15x-5xy\\ =5x\left(3-y\right)\\ b,\left(x^2+1\right)^2-4x^2\\ =\left(x^2-x+1\right)\left(x^2+x+1\right)\\ c,x^2-10x-9y^2+25\\ =\left(x-5\right)^2-9y^2\\ =\left(x-9y-5\right)\left(x+9y-5\right)\)
\(10x-25-x^2=-\left(x^2-10x+25\right)\)
\(=-\left(x^2-2.x.5+5^2\right)=-\left(x-5\right)^2\)
d: \(=\left(x+1-5\right)\left(x+1+5\right)=\left(x-4\right)\left(x+6\right)\)
Bài 3
a) x² + 10x + 25
= x² + 2.x.5 + 5²
= (x + 5)²
b) 8x - 16 - x²
= -(x² - 8x + 16)
= -(x² - 2.x.4 + 4²)
= -(x - 4)²
c) x³ + 3x² + 3x + 1
= x³ + 3.x².1 + 3.x.1² + 1³
= (x + 1)³
d) (x + y)² - 9x²
= (x + y)² - (3x)²
= (x + y - 3x)(x + y + 3x)
= (y - 2x)(4x + y)
e) (x + 5)² - (2x - 1)²
= (x + 5 - 2x + 1)(x + 5 + 2x - 1)
= (6 - x)(3x + 4)
Bài 4
a) x² - 9 = 0
x² = 9
x = 3 hoặc x = -3
b) (x - 4)² - 36 = 0
(x - 4 - 6)(x - 4 + 6) = 0
(x - 10)(x + 2) = 0
x - 10 = 0 hoặc x + 2 = 0
*) x - 10 = 0
x = 10
*) x + 2 = 0
x = -2
Vậy x = -2; x = 10
c) x² - 10x = -25
x² - 10x + 25 = 0
(x - 5)² = 0
x - 5 = 0
x = 5
d) x² + 5x + 6 = 0
x² + 2x + 3x + 6 = 0
(x² + 2x) + (3x + 6) = 0
x(x + 2) + 3(x + 2) = 0
(x + 2)(x + 3) = 0
x + 2 = 0 hoặc x + 3 = 0
*) x + 2 = 0
x = -2
*) x + 3 = 0
x = -3
Vậy x = -3; x = -2
a) \(25a^2-1=\left(5a-1\right)\left(5a+1\right)\)
b) \(a^2-9=\left(a-3\right)\left(a+3\right)\)
c) \(\dfrac{1}{4}a^2-\dfrac{9}{25}=\left(\dfrac{1}{2}a-\dfrac{3}{5}\right)\left(\dfrac{1}{2}a+\dfrac{3}{5}\right)\)
d) \(\dfrac{9}{4}a^4-\dfrac{16}{25}=\left(\dfrac{3}{2}a^2-\dfrac{4}{5}\right)\left(\dfrac{3}{2}a^2+\dfrac{4}{5}\right)\)
e) \(\left(2a+b\right)^2-a^2=\left(2a+b-a\right)\left(2a+b+a\right)=\left(a+b\right)\left(3a+b\right)\)
f) \(16\left(x-1\right)^2-25\left(x+y\right)^2=\left(4x-4-5x-5y\right)\left(4x-4+5x+5y\right)=\left(-x-4-5y\right)\left(9x+5y-4\right)\)
a/ $25x^2-1\\=(5x)^2-1^2\\=(5x-1)(5x+1)$
b/ $a^2-9\\=a^2-3^2\\=(a-3)(a+3)$
c/ $\dfrac{1}{4}a^2-\dfrac{9}{25}\\=\left(\dfrac{1}{2}a\right)^2-\left(\dfrac{3}{5}\right)^2\\=\left(\dfrac{1}{2}a-\dfrac{3}{5}\right)\left(\dfrac{1}{2}a+\dfrac{3}{5}\right)$
d/ $\dfrac{9}{4}a^4-\dfrac{16}{25}\\=\left(\dfrac{3}{2}a^2\right)^2-\left(\dfrac{4}{5}\right)^2\\=\left(\dfrac{3}{2}a^2-\dfrac{4}{5}\right)\left(\dfrac{3}{2}a^2+\dfrac{4}{5}\right)\\=\left[\left(\sqrt{\dfrac 3 2}a\right)^2-\left(\dfrac{2\sqrt 5}{5}\right)^2\right]\left(\dfrac{3}{2}a^2+\dfrac{4}{5}\right)\\=\left(\sqrt{\dfrac 3 2}a-\dfrac{2\sqrt 5}{5}\right)\left(\sqrt{\dfrac 3 2}a+\dfrac{2\sqrt 5}{5}\right)\left(\dfrac{3}{2}a^2+\dfrac{4}{5}\right)$
e/ $(2a+b)^2-a^2\\=(2a+b-a)(2a+b+a)\\=(a+b)(3a+b)$
f/ $16(x-1)^2-25(x+y)^2\\=[4(x-1)]^2-[5(x-y)]^2\\=[4(x-1)-5(x-y)][4(x-1)+5(x-y)]\\=[4x-4-5x+5y][4x-4+5x-5y]\\=(-x+5y-4)(9x-5y-4)$
\(=\left(x-y\right)\left(x+y\right)-10\left(x+y\right)=\)
\(=\left(x+y\right)\left(x-y-10\right)\)
= (x - y). (x + y) - 10 ( x - y)
= [( x + y) - 10)] . ( x - y)
a: \(x^2-y^2-x-y\)
\(=\left(x-y\right)\left(x+y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y-1\right)\)
f: \(x^3-5x^2-5x+1\)
\(=\left(x+1\right)\left(x^2-x+1\right)-5x\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-6x+1\right)\)
Câu 17:
Xét ΔADC có OE//DC
nên \(\dfrac{OE}{DC}=\dfrac{AO}{AC}\left(1\right)\)
Xét ΔBDC có OH//DC
nên \(\dfrac{OH}{DC}=\dfrac{BO}{BD}\left(2\right)\)
Xét ΔOAB và ΔOCD có
\(\widehat{OAB}=\widehat{OCD}\)(hai góc so le trong, AB//CD)
\(\widehat{AOB}=\widehat{COD}\)(hai góc đối đỉnh)
Do đó: ΔOAB đồng dạng với ΔOCD
=>\(\dfrac{OA}{OC}=\dfrac{OB}{OD}\)
=>\(\dfrac{OC}{OA}=\dfrac{OD}{OB}\)
=>\(\dfrac{OC}{OA}+1=\dfrac{OD}{OB}+1\)
=>\(\dfrac{OC+OA}{OA}=\dfrac{OD+OB}{OB}\)
=>\(\dfrac{AC}{OA}=\dfrac{BD}{OB}\)
=>\(\dfrac{OA}{AC}=\dfrac{OB}{BD}\left(3\right)\)
Từ (1),(2),(3) suy ra \(\dfrac{OE}{DC}=\dfrac{OH}{DC}\)
=>OE=OH
Câu 15:
a: \(3x\left(x-1\right)+x-1=0\)
=>\(3x\left(x-1\right)+\left(x-1\right)=0\)
=>\(\left(x-1\right)\left(3x+1\right)=0\)
=>\(\left[{}\begin{matrix}x-1=0\\3x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{3}\end{matrix}\right.\)
b: \(x^2-6x=0\)
=>\(x\cdot x-x\cdot6=0\)
=>x(x-6)=0
=>\(\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
1) 196a2 - 4b2 = (14a)2 - (2b)2 = (14a + 2b)(14a - 2b)
2) 25a2 - 49b2 = (5a)2 - (7b)2 = (5a + 7b)(5a - 7b)
3) x2 + 10x + 25 = (x + 5)2
1) \(196a^2-4b^2=4\left(49a^2-b^2\right)=4\left(7a-b\right)\left(7a+b\right)\)
2) \(25a^2-49b^4=\left(5a\right)^2-\left(49b^2\right)^2=\left(5a-49b^2\right)\left(5a+49b^2\right)\)
3) \(x^2+10x+25=x^2+5x+5x+25=x\left(x+5\right)+5\left(x+5\right)=\left(x+5\right)^2\)