Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x^3 - x +3x^2y +3xy^2 + y^3 -y
=(x3+3x2y+3xy2+y3)+(-x-y)
=(x+y)3-(x+y)
=(x+y)[(x+y)2-1]
=(x+y)(x+y-1)(x+y+1)
Bạn viết thiếu y3
x3--x+3x2yy+3xxy2+y3--y
= (x+y)3−(x+y)(x+y)3−(x+y)
= (x+y)[(x+y)2−1]
Thêm bớt hạng tử thôi:
\(x^3+3xy+y^3-1\)
\(=\left(x^3+3x^2y+3xy^2+y^3-1\right)-3x^2y-3xy^2+3xy\)
\(=\left[\left(x+y\right)^3-1^3\right]-3xy\left(x+y-1\right)\)
\(=\left(x+y-1\right)\left[\left(x+y\right)^2+x+y+1\right]-3xy\left(x+y-1\right)\)
\(=\left(x+y-1\right)\left(x^2+2xy+y^2+x+y+1-3xy\right)\)
\(=\left(x+y-1\right)\left(x^2-xy+y^2+x+y+1\right)\)
phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung(không dùng HĐT)
x3 -3x2y+3xy2 - y3
\(=xy\left(x^2-3x+3y-y^2\right)\)
\(=xy\left[\left(x-y\right)\left(x+y\right)+3\left(x-y\right)\right]\)
\(=xy\left(x-y\right)\left(x+y+3\right)\)
\(Ht\)
nếu sai cho mik xl vì mik chx thành thục cái này
a) x3 + y3 - 3xy + 1
= ( x + y )3 - 3xy( x + y ) - 3xy + 1
= [ ( x + y )3 + 1 ] - [ 3xy( x + y ) + 3xy ]
= ( x + y + 1 )( x2 + 2xy + y2 - x - y + 1 ) - 3xy( x + y + 1 )
= ( x + y + 1 )( x2 - xy + y2 - x - y + 1 )
b) ( 4 - x )5 + ( x - 2 )5 - 32
= [ -( x - 4 ) ]5 + ( x - 2 )5 - 32
Đặt t = x - 3
đthức <=> ( 1 - t )5 + ( 1 + t )5 - 32 ( chỗ này bạn dùng nhị thức Newton để khai triển nhé )
= 10t4 + 20t2 - 30
Đặt y = t2
đthức = 10y2 + 20y - 30
= 10y2 - 10y + 30y - 30
= 10y( y - 1 ) + 30( y - 1 )
= 10( y - 1 )( y + 3 )
= 10( t2 - 1 )( t2 + 3 )
= 10( t - 1 )( t + 1 )( t2 + 3 )
= 10( x - 3 - 1 )( x - 3 + 1 )[ ( x - 3 )2 + 3 ]
= 10( x - 4 )( x - 2 )( x2 - 6x + 12 )
a,\(x^3+y^3-3xy+1\)
\(=\left(x^3+3x^2y+3xy^2+y^3\right)+1-3x^2y-3xy^2-3xy\)
\(=\left[\left(x+y\right)^3+1\right]-3xy\left(x+y+1\right)\)
\(=\left(x+y+1\right)\left[\left(x+y\right)^2-\left(x+y\right)+1\right]-3xy\left(x+y+1\right)\)
\(=\left(x+y+1\right)\left(x^2+2xy+y^2-x-y+1-3xy\right)\)
\(=\left(x+y+1\right)\left(x^2+y^2-xy-x-y+1\right)\)
Có phải đề như thế này không bạn
\(x^3+3xy+y^3-1\)
\(=\left(x+y\right)^3-1+3xy-3xy\left(x+y\right)\)
\(=\left(x+y-1\right)\left(x^2+y^2+2xy+x+y+1\right)-3xy\left(x+y-1\right)\)
\(=\left(x+y-1\right)\left(x^2+y^2+2xy+x+y+1-3xy\right)\)
\(=\left(x+y-1\right)\left(x^2+y^2-xy+x+y+1\right)\)
a ) ( x3 -x + 3x3y + 3xy2 + y3 -y) = ( x + y )3 - ( x + y ) = ( x-y )2 ( x - y - 1 )
b) x2 + 5x -6 = x2 + 6x -x - 6 = x( x + 6 ) - ( x + 6 ) = ( x -1 ) ( x + 6 )
c) 16 x - 5x2 - 3 = -5x2 + 15x +x -3 = -5x ( x-3 ) + ( x - 3 ) = ( 1 - 5x ) ( x-3)
a) \(x^2+5x-6=x^2+x-6x-6=x\left(x+1\right)-6\left(x+1\right)=\left(x+1\right)\left(x-6\right)\)
b) \(x^3-x+3x^2y+3xy^2+y^3-y\)
\(=\left(x^3+3x^2y+3xy^2+y^2\right)-\left(x+y\right)\)
\(=\left(x+y\right)^3-\left(x+y\right)\)
\(=\left(x+y\right)\left[\left(x+y\right)^2-1\right]=\left(x+y\right)\left(x+y+1\right)\left(x+y-1\right)\)
vô đây Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
http://olm.vn/hoi-dap/question/163953.html bn vô đay tham khảo nhé