Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x^2+4x+6\right)\left(x^2+6x+6\right)-3x^2\left(1\right)\)
Đặt \(x^2+5x+6=t\)Thay vào (1) ta được:
\(\left(t-x\right)\left(t+x\right)-3x^2\)
\(=t^2-x^2-3x^2\)
\(=t^2-4x^2\)
\(=\left(t-2x\right)\left(t+2x\right)\)Thay \(t=x^2+5x+6\)ta được:
\(\left(x^2+5x+6-2x\right)\left(x^2+5x+6+2x\right)\)
\(=\left(x^2+3x+6\right)\left(x^2+7x+6\right)\)
\(=\left(x^2+3x+6\right)\left(x^2+x+6x+6\right)\)
\(=\left(x^2+3x+6\right)\left[x\left(x+1\right)+6\left(x+1\right)\right]\)
\(=\left(x^2+3x+6\right)\left(x+1\right)\left(x+6\right)\)
1/ \(x-6\sqrt{x}-8=\left(\sqrt{x}-3+\sqrt{17}\right)\left(\sqrt{x}-3-\sqrt{17}\right)\)
2/ Bài này làm gì còn phân tích được nữa.
a/ \(x^2+5\sqrt{x}+6=x^2+2\sqrt{x}+3\sqrt{x}+6\)
\(=\sqrt{x}\left(\sqrt{x}+2\right)+3\left(\sqrt{x}+2\right)=\left(\sqrt{x}+2\right)\left(\sqrt{x}+3\right)\)
b/ \(x^2+4\sqrt{x}+3=x^2+\sqrt{x}+3\sqrt{x}+3\)
\(=\sqrt{x}\left(\sqrt{x}+1\right)+3\left(\sqrt{x}+1\right)=\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)\)
c/ k bik làm
x2 - 6 = x2 - (√6)2 = (x - √6)(x + √6)