K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 6 2018

\(a^3.\left(c+b^2\right)+b^3\left(a-c^2\right)+c^3\left(b-a^2\right)+abc\left(abc-1\right)\)

\(\)\(\left(a.c^3\right)-\left(a^3.b^2\right)+ab^3-b^3c^2+bc^3-a^2c^3+a^2b^2c^2-abc\)

\(=a^2b^2c^2-b^3c^2-\left(a^2c^3-bc^3\right)-\left(a^3b^2-ab^3\right)+\left(a^3c-abc\right)\)

\(=b^2c^2.\left(a^2-b\right)-c^3.\left(a^2-b\right)-ab^2.\left(a^2-b\right)+ac.\left(a^2-b\right)\)

\(=\left(a^2-b\right).\left(b^2c^2-c^3-ab^2+ac\right)\)

\(=\left(a^2-b\right).[c^2.\left(b^2-c\right)-a.\left(b^2-c\right)]\)

\(=\left(a^2-b\right)\left(b^2-c\right)\left(c^2-a\right)\)

5 tháng 10 2016

Đề đúng là a3+ a2b- a2c+ b2c- abc+b3

=(a3+b3)+(a2c-abc+b2c)

=(a+b)(a2-ab+b2)+c(a2-ab+b2)

=(a+b+c)(a2-ab+b2)
 

1 tháng 10 2016

\(a^3\left(c-b^2\right)+b^3\left(a-c^2\right)+c^3\left(b-a^2\right)+abc\left(abc-1\right)\)

=\(a^3c-a^3b^2+b^3\left(a-c^2\right)+bc^3-a^2c^3+a^2b^2c^2-abc\)

=\(\left(a^3c-a^2c^3\right)+b^3\left(a-c^2\right)-\left(a^3b^2-a^2b^2c^2\right)+\left(bc^3-abc\right)\)

=\(a^2c\left(a-c^2\right)+b^3\left(a-c^2\right)-a^2b^2\left(a-c^2\right)-bc\left(a-c^2\right)\)

=\(\left(a^2c+b^3-a^2b^2-bc\right)\left(a-c^2\right)\)

=\(\left[c\left(a^2-b\right)-b^2\left(a^2-b\right)\right]\left(a-c^2\right)\)

=\(\left(c-b^2\right)\left(a^2-b\right)\left(a-c^2\right)\)

Chắc là vậybanhqua

1 tháng 10 2016

hình như cậu hơi nhầm... chứ bài này tớ đã làm và ra kết quả khác

18 tháng 12 2018

Phân tích đa thức thành nhân tử
a) (1-2x)(1+2x)-x(x+2)(x-2)

\(=1-4x^2-x\left(x^2-4\right)\)

\(=1-4x^2-x^3+4x\)

\(=\left(1-x^3\right)+\left(4x-4x^2\right)\)

\(=\left(1-x\right)\left(1+x+x^2\right)+4x\left(1-x\right)\)

\(=\left(1-x\right)\left(1+x+x^2+4x\right)\)

\(=\left(1-x\right)\left(x^2+5x+1\right)\)

18 tháng 12 2018

\(a\left(a+2b\right)^3-b\left(2a+b\right)^3\)

\(=a\left(a^3+6a^2b+12ab^2+8b^3\right)-b\left(8a^3+12a^2b+6ab^2+b^3\right)\)

\(=a^4+6a^3b+12a^2b^2+8b^3a-8a^3b-12a^2b^2+6ab^3-b^4\)

\(=a^4+6a^3b+8b^3a-8a^3b-6ab^3-b^4\)

\(=\left(a^4-b^4\right)+\left(6a^3b-6ab^3\right)+\left(8b^3a-8a^3b\right)\)

\(=\left(a-b\right)\left(a^3+a^2b+ab^2+b^3\right)+6ab\left(a^2-b^2\right)+8ab\left(b^2-a^2\right)\)

\(=\left(a-b\right)\left(a^3+a^2b+ab^2+b^3\right)+6ab\left(a-b\right)\left(a+b\right)-8ab\left(a-b\right)\left(a+b\right)\)

\(=\left(a-b\right)\left(a^3+a^2b+ab^2+b^3+6a^2b+6ab^2-8a^2b-8ab^2\right)\)

\(=\left(a-b\right)\left(a^3-a^2b-ab^2+b^3\right)\)

\(=\left(a-b\right)\left[a^2\left(a-b\right)-b^2\left(a-b\right)\right]\)

\(=\left(a-b\right)^3\left(a+b\right)\)