K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 6 2015

(a+1)2-22= ( a+1 -2) . (a+1+2)=(a-1).(a+3)

              đúng nha^^

= a2b2.( ab + 1 - a - b)

tk mik nha

27 tháng 8 2017

=(a+1)2-(2a)2

=(a2+1+2a)(a2+1-2a)

=(a+1)2(a-1)2

mình làm thế ko biết có đúng hay ko

27 tháng 8 2017

( a2 + 1 )2 - 4a2

= ( a2 + 1 )2 - ( 2a )2

= ( a2 + 1 + 2a ) ( a2 + 1 - 2a )

........

7 tháng 9 2017

ta có \(a^2\left(a+1\right)^2+\left(a+1\right)^2+a^2=a^2\left(a^2+2a+1\right)+a^2+2a+1+a^2\)

\(=a^4+2a^3+a^2+a^2+2a+1+a^2\) \(=a^4+a^2+1+2a^3+2a^2+2a=\left(a^2+a+1\right)^2\)

26 tháng 7 2017

không phân tích được nhé

16 tháng 6 2016

\(\left(a^2+1\right)^2-4a^2\)\(=\left(a^2+1\right)^2-\left(2a\right)^2=\)\(\left(a^2+2a+1\right)\left(a^2-2a+1\right)=\)\(\left(a+1\right)^2\left(a-1\right)^2\)

16 tháng 6 2016

Tách 4a^2 =(2a)^2 rồi dùng hằng đẳng thức số 3 

8 tháng 9 2019

\(x^2-y^2+4x+4\)

\(=\left(x+2\right)^2-y^2\)

\(=\left(x+2+y\right)\left(x+2-y\right)\)

\(4x^2-y^2+8\left(y-2\right)\)

\(=4x^2-\left(y^2-8y+16\right)\)

\(=4x^2-\left(y-4\right)^2\)

\(=\left(2x+y-4\right)\left(2x-y+4\right)\)

3 tháng 8 2020

\(\left(x^2+1\right)^2+3x\left(x^2+1\right)+2x^2\)

\(=x^4+1+2x^2+3x^2+3x+2x^2\)

\(=x^4+3x^3+4x^2+3x+1\)

\(=x^4+x^3+2x^3+2x^2+2x^2+2x+x+1\)

\(=\left(x+1\right)\left(x^3+2x^2+2x+1\right)\)

3 tháng 8 2020

Đặt \(x^2+1=a\) thay vào ta được :

\(a^2+3ax+2x^2\)

\(=a^2+ax+2ax+2x^2\)

\(=a\left(a+x\right)+2x\left(a+x\right)\)

\(=\left(a+2x\right)\left(a+x\right)\)

\(=\left(x^2+1+2x\right)\left(x^2+1+x\right)\)

\(=\left(x+1\right)^2\left(x^2+x+1\right)\)

3 tháng 8 2020

Em sửa lại tên đi nhé!

\(\left(x^2-1\right)^2-x\left(x^2-1\right)-2x^2\)

\(\left(x^2-1\right)^2-2.\left(x^2-1\right).\frac{x}{2}+\frac{x^2}{4}-\frac{x^2}{4}-2x^2\)

\(\left(x^2-1-\frac{x}{2}\right)^2-\frac{9}{4}x^2\)

\(=\left(x^2-1-\frac{x}{2}-\frac{3}{2}x\right)\left(x^2-1-\frac{x}{2}+\frac{3}{2}x\right)\)

\(\left(x^2-2x-1\right)\left(x^2-x-1\right)\)

Phân tích tiếp được đấy:

\(x^2-2x-1=\left(x-1\right)^2-2=\left(x-1-\sqrt{2}\right)\left(x-1+\sqrt{2}\right)\)

\(x^2-x-1=\left(x-\frac{1}{2}\right)^2-\frac{5}{4}=\left(x-\frac{1}{2}-\frac{\sqrt{5}}{2}\right)\left(x-\frac{1}{2}+\frac{\sqrt{5}}{2}\right)\)

Thay vào nhé!