K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 8 2019

\(8x^3+12x^2+6x+1\)

\(=\left(2x\right)^3-3\left(2x\right)^2.1+2.3x.1^2-1^3\)

\(=\left(2x-1\right)^3\)

7 tháng 12 2023

(2x+1)nhé mn bn này lm sai ạ

 

27 tháng 12 2019

\(M=3x^4-8x^3-6x^2+8x+3\)

\(=3x^4-12x^3+4x^3+9x^2+x^2-16x^2+12x-4x+3\)

\(=\left(3x^4-12x^3+9x^2\right)+\left(4x^3-16x^2+12x\right)+\left(x^2-4x+3\right)\)

\(=3x^2\left(x^2-4x+3\right)+4x\left(x^2-4x+3\right)+\left(x^2-4x+3\right)\)

\(=\left(3x^2+4x+1\right)\left(x^2-4x+3\right)\)

\(=\left(3x^2+3x+x+1\right)\left(x^2-3x-x+3\right)\)

\(=\left[3x\left(x+1\right)+\left(x+1\right)\right]\left[x\left(x-3\right)-\left(x-3\right)\right]\)

\(=\left(3x+1\right)\left(x+1\right)\left(x-1\right)\left(x-3\right)\)

M = 0\(\Leftrightarrow\left(3x+1\right)\left(x+1\right)\left(x-1\right)\left(x-3\right)=0\)

\(\Rightarrow x\in\left\{\frac{-1}{3};-1;1;3\right\}\)

19 tháng 10 2020

a) x2 - 4x + 2 = (x2 - 4x + 4) - 2 = (x - 2)2 - 2 = \(\left(x-2+\sqrt{2}\right)\left(x-2-\sqrt{2}\right)\)

b)  x2 - 12x + 11 = x2 - x - 11x + 11 = x(x - 1) - 11(x - 1) = (x - 1)(x - 11)

c) 3x2 + 6x - 9 = 3x2 - 3x + 9x - 9 = 3x(x - 1) + 9(x - 1) = (3x + 9)(x - 1) = 3(x + 3)(x - 1)

d) 2x2 - 6x + 2 = 2(x2 - 3x + 1) = 2(x2 - 3x + 9/4 - 5/4) = 2[(x - 3/2)2 - 5/4] = \(2\left(x-\frac{3}{2}+\sqrt{\frac{5}{4}}\right)\left(x-\frac{3}{2}-\sqrt{\frac{5}{4}}\right)\) 

19 tháng 10 2020

1. 

a) \(x^2-4x+2=\left(x^2-4x+4\right)-2=\left(x-2\right)^2-2=\left(x-2-\sqrt{2}\right)\left(x-2+\sqrt{2}\right)\)

b) \(x^2-12x+11=\left(x^2-12x+36\right)-25=\left(x-6\right)^2-5^2=\left(x-6-5\right)\left(x-6+5\right)=\left(x-11\right)\left(x-1\right)\)

c) \(3x^2+6x-9=3\left(x^2+2x-3\right)=3\left[\left(x^2+2x+1\right)-4\right]=3\left[\left(x+1\right)^2-2^2\right]=3\left(x-1\right)\left(x+3\right)\)

d) \(2x^2-6x+2=2\left(x^2-3x+1\right)=2\left(x^2-2.x.\frac{3}{2}+\frac{9}{4}-\frac{5}{4}\right)=2\left[\left(x-\frac{3}{2}\right)^2-\frac{5}{4}\right]\)

\(=2\left(x-\frac{3}{2}-\frac{\sqrt{5}}{2}\right)\left(x-\frac{3}{2}+\frac{\sqrt{5}}{2}\right)\)

26 tháng 6 2015

X^2n - 4 X^n.Y^n-1 + 4Y^2(n-1)

(X ^ n)^2 - 2. X^n.2. Y^n-1 + (2Y ^n-1)^2

= ( X ^N - 2Y^n-1  ) ^2  

10 tháng 10 2021

\(a)\) \(3x^2-6x=3x\left(x-2\right)\)

\(b)\) \(9x^3-9x^2y-4x+4y\)

\(=9x^2.\left(x-y\right)-4\left(x-y\right)\)

\(=\left(9x^2-4\right)\left(x-y\right)\)

\(=[\left(3x\right)^2-2^2]\left(x-y\right)\)

\(=\left(3x-2\right)\left(3x+2\right)\left(x-y\right)\)

\(c)\) \(x^3-2x^2-8x\)

\(=x\left(x^2-2x-8\right)\)

\(=x\left(x+2\right)\left(x-4\right)\)

12 tháng 8 2015

a/  2x^3 -5x^2 + 8x -3

= 2x^3 -x^2 -4x^2 +2x +6x -3

= x^2 .[2x-1] - 2x[2x-1] +3. [2x-1]

= [x^2-2x+3] [2x-1]

b/  3x^3 - 14x^2 +4x +3 

= 3x^3 +x^2 -15 x^2 -5x +9x +3

= x^2 [3x+1] -5.x [3x+1] +3. [3x+1]

= [x^2 -5x+3] [3x+1]

c/  Đặt C =  12x^2 + 5 x -12 y^2 +12y -10xy -3

 = -[12y^2+10xy+3-12x^2-5x-12y]

12y^2 + 10xy +3-12x^2-5x-12y = 18xy +12y^2 -6y - 12x^2 -8xy +4x -9x -6y +3

                                             = 6y [3x+2y-1] - 4.x[3x+2y-1] -3.[3x+2y-1]

                                            = [6y-4x-3] [3x+2y-1]

=> C = -[6y-4x-3]. [ 3x+2y-1]

2 tháng 5 2016

tom lai minh ra

12x2+5x-12y2+12y-10xy-3=12(x+(2y-1)/3)(x-(6y-3)/4)) co dung ko nha.

2 tháng 9 2020

Bài 1.

a) x( 8x - 2 ) - 8x2 + 12 = 0

<=> 8x2 - 2x - 8x2 + 12 = 0 

<=> 12 - 2x = 0

<=> 2x = 12

<=> x = 6

b) x( 4x - 5 ) - ( 2x + 1 )2 = 0

<=> 4x2 - 5x - ( 4x2 + 4x + 1 ) = 0

<=> 4x2 - 5x - 4x2 - 4x - 1 = 0

<=> -9x - 1 = 0

<=> -9x = 1

<=> x = -1/9

c) ( 5 - 2x )( 2x + 7 ) = ( 2x - 5 )( 2x + 5 )

<=> -4x2 - 4x + 35 = 4x2 - 25

<=> -4x2 - 4x + 35 - 4x2 + 25 = 0

<=> -8x2 - 4x + 60 = 0

<=> -8x2 + 20x - 24x + 60 = 0

<=> -4x( 2x - 5 ) - 12( 2x - 5 ) = 0

<=> ( 2x - 5 )( -4x - 12 ) = 0

<=> \(\orbr{\begin{cases}2x-5=0\\-4x-12=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=-3\end{cases}}\)

d) 64x2 - 49 = 0

<=> ( 8x )2 - 72 = 0

<=> ( 8x - 7 )( 8x + 7 ) = 0

<=> \(\orbr{\begin{cases}8x-7=0\\8x+7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{7}{8}\\x=-\frac{7}{8}\end{cases}}\)

e) ( x2 + 6x + 9 )( x2 + 8x + 7 ) = 0

<=> ( x + 3 )2( x2 + x + 7x + 7 ) = 0

<=> ( x + 3 )[ x( x + 1 ) + 7( x + 1 ) ] = 0

<=> ( x + 3 )2( x + 1 )( x + 7 ) = 0

<=> x = -3 hoặc x = -1 hoặc x = -7

g) ( x2 + 1 )( x2 - 8x + 7 ) = 0

Vì x2 + 1 ≥ 1 > 0 với mọi x

=> x2 - 8x + 7 = 0

=> x2 - x - 7x + 7 = 0

=> x( x - 1 ) - 7( x - 1 ) = 0

=> ( x - 1 )( x - 7 ) = 0

=> \(\orbr{\begin{cases}x-1=0\\x-7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=7\end{cases}}\)

Bài 2.

a) ( x - 1 )2 - ( x - 2 )( x + 2 )

= x2 - 2x + 1 - ( x2 - 4 )

= x2 - 2x + 1 - x2 + 4

= -2x + 5

b) ( 3x + 5 )2 + ( 26x + 10 )( 2 - 3x ) + ( 2 - 3x )2

= 9x2 + 30x + 25 - 78x2 + 22x + 20 + 9x2 - 12x + 4

= ( 9x2 - 78x2 + 9x2 ) + ( 30x + 22x - 12x ) + ( 25 + 20 + 4 )

= -60x2 + 40x2 + 49

d) ( x + y )2 - ( x + y - 2 )2

= [ x + y - ( x + y - 2 ) ][ x + y + ( x + y - 2 ) ]

= ( x + y - x - y + 2 )( x + y + x + y - 2 )

= 2( 2x + 2y - 2 )

= 4x + 4y - 4

Bài 3.

 A = 3x2 + 18x + 33

= 3( x2 + 6x + 9 ) + 6 

= 3( x + 3 )2 + 6 ≥ 6 ∀ x

Đẳng thức xảy ra <=> x + 3 = 0 => x = -3

=> MinA = 6 <=> x = -3

B = x2 - 6x + 10 + y2

= ( x2 - 6x + 9 ) + y2 + 1

= ( x - 3 )2 + y2 + 1 ≥ 1 ∀ x,y

Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-3=0\\y^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=0\end{cases}}\)

=> MinB = 1 <=> x = 3 ; y = 0

C = ( 2x - 1 )2 + ( x + 2 )2

= 4x2 - 4x + 1 + x2 + 4x + 4

= 5x2 + 5 ≥ 5 ∀ x

Đẳng thức xảy ra <=> 5x2 = 0 => x = 0

=> MinC = 5 <=> x = 0

D = -2/7x2 - 8x + 7 ( sửa thành tìm Max )

Để D đạt GTLN => 7x2 - 8x + 7 đạt GTNN

7x2 - 8x + 7 

= 7( x2 - 8/7x + 16/49 ) + 33/7

= 7( x - 4/7 )2 + 33/7 ≥ 33/7 ∀ x

Đẳng thức xảy ra <=> x - 4/7 = 0 => x = 4/7

=> MaxC = \(\frac{-2}{\frac{33}{7}}=-\frac{14}{33}\)<=> x = 4/7