K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2021

1, \(y^2-6+y-\sqrt{6}=\left(y-\sqrt{6}\right)\left(y+\sqrt{6}\right)+y-\sqrt{6}=\left(y+\sqrt{6}+1\right)\left(y-\sqrt{6}\right)\)

2,ĐK : x;y>=0 

 \(x-y+\sqrt{x}+\sqrt{y}=\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)+\sqrt{x}+\sqrt{y}\)

\(=\left(\sqrt{x}-\sqrt{y}+1\right)\left(\sqrt{x}+\sqrt{y}\right)\)

15 tháng 9 2021

1) \(x\sqrt{y}+y\sqrt{x}=\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)\)

2) \(9-6\sqrt{a}+a=\left(\sqrt{a}-3\right)^2\)

3) \(a+2\sqrt{ab}+b=\left(\sqrt{a}+\sqrt{b}\right)^2\)

4) \(x-y+\sqrt{x}+\sqrt{y}=\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)+\left(\sqrt{x}+\sqrt{y}\right)=\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}+1\right)\)

5) \(a+2\sqrt{ab}+b-1=\left(\sqrt{a}+\sqrt{b}\right)^2-1=\left(\sqrt{a}+\sqrt{b}-1\right)\left(\sqrt{a}+\sqrt{b}+1\right)\)

15 tháng 9 2021

1) \(x\sqrt{y}+y\sqrt{x}=\sqrt{x}\sqrt{y}\left(\sqrt{x}+\sqrt{y}\right)\)

2) \(9-6\sqrt{a}+a=\left(3-\sqrt{a}\right)^2\)

3) \(a+2\sqrt{ab}+b=\left(\sqrt{a}+\sqrt{b}\right)^2\)

4) \(x-y+\sqrt{x}+\sqrt{y}=\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)+\left(\sqrt{x}+\sqrt{y}\right)=\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}+1\right)\)

5) \(a+2\sqrt{ab}+b-1=\left(\sqrt{a}+\sqrt{b}\right)^2-1^2=\left(\sqrt{a}+\sqrt{b}-1\right)\left(\sqrt{a}+\sqrt{b}+1\right)\)

3 tháng 7 2018

Ta có: \(x^2+y^2+2xy+x+y-6\)

\(=\left(x+y\right)^2+x+y-6\)

\(=\left(x+y\right)^2+x+y-9+3\)

\(=\left[\left(x+y\right)^2-3^2\right]+\left(x+y+3\right)\)

\(=\left(x+y-3\right)\left(x+y+3\right)+\left(x+y+3\right)\)

\(=\left(x+y+3\right)\left(x+y-2\right)\)

18 tháng 11 2018

ta có : x2 + y2 + 2xy + x + y - 6

= ( x + y ) 2 + x + y - 6

= ( x + y ) 2 + x + y - 9 + 3 

=[ ( x + y )2 - 32 ] + ( x + y + 3 )

= ( x + y - 3 ) ( x + y + 3 ) + ( x + y + 3 )

= ( x + y + 3 ) ( x + y - 2)

22 tháng 7 2015

 

\(a,x-9+y-2\sqrt{xy}\left(x;y>0\right)\)

\(=\left(\sqrt{x}\right)^2-2\sqrt{x}\sqrt{y}+\left(\sqrt{y}\right)^2-9\)

\(=\left(\sqrt{x}-\sqrt{y}\right)^2-9\)

\(=\left(\sqrt{x}-\sqrt{y}+3\right)\left(\sqrt{x}-\sqrt{y}-3\right)\)

\(b,\text{ đkxđ }x\ge0\)

\(x-5\sqrt{x}+6=\left(\sqrt{x}\right)^2-2\sqrt{x}-3\sqrt{x}+6\)

\(=\sqrt{x}.\left(\sqrt{x}-2\right)-3.\left(\sqrt{x}-2\right)=\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)\)

\(c,đ\text{kxđ }x\ge0\)

\(x-2\sqrt{x}-3=\left(\sqrt{x}\right)^2+\sqrt{x}-3\sqrt{x}-3\)

\(=\sqrt{x}\left(\sqrt{x}+1\right)+3.\left(\sqrt{x}+1\right)=\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)\)

\(d,\text{đkxđ }x\ge0\)

\(\sqrt{x}-x^2=\sqrt{x}-\left(\sqrt{x}\right)^4=\sqrt{x}\left(1-\left(\sqrt{x}\right)^3\right)\)

\(=\sqrt{x}.\left(1-\sqrt{x}\right)\left(1+\sqrt{x}+x\right)\)

28 tháng 7 2020

Trả lời:

\(x-5\sqrt{x}+6=x-3\sqrt{x}-2\sqrt{x}+6\)

                               \(=\sqrt{x}.\left(\sqrt{x}-3\right)-2.\left(\sqrt{x}-3\right)\)

                               \(=\left(\sqrt{x}-3\right).\left(\sqrt{x}-2\right)\)

\(x-9+y-2\sqrt{xy}=\left(x-2\sqrt{xy}+y\right)-9\)

                                          \(=\left(\sqrt{x}-\sqrt{y}\right)^2-9\)

                                          \(=\left(\sqrt{x}-\sqrt{y}-3\right).\left(\sqrt{x}-\sqrt{y}+3\right)\)

\(x-2\sqrt{x}-3=x-3\sqrt{x}+\sqrt{x}-3\)

                               \(=\sqrt{x}.\left(\sqrt{x}-3\right)+\left(\sqrt{x}-3\right)\)

                               \(=\left(\sqrt{x}-3\right).\left(\sqrt{x}+1\right)\)

Học tốt 

31 tháng 7 2018

b, <=>(4x)3+13 

<=> (4x+1)( 16x2-4x+1)

c, <=> (x.y2.z3)3-53

<=> (xy2z3-5)( x2y4z6+5xy2z3+25)

d, <=> (3x2)3-(2x)3

<=> (3x2-2x)(9x4+6x3+4x2)

d, (x3)2- (y3)2 

= (x3+y3)(x3-y3)

4 tháng 6 2018

\(x\left(y+z\right)^2+y\left(x+z\right)^2+z\left(x+y\right)^2-4xyz\)

\(=x\left(y^2+2yz+z^2\right)+y\left(x^2+2xz+z^2\right)+z\left(x+y\right)^2-4xyz\)

\(=xy^2+2xyz+xz^2+x^2y+2xyz+yz^2+z\left(x+y\right)\left(x+y\right)-4xyz\)

\(=\left(xy^2+x^2y\right)+\left(xz^2+yz^2\right)+z\left(x+y\right)^2\)

\(=xy\left(x+y\right)+z^2\left(x+y\right)+\left(xz+yz\right)\left(x+y\right)\)

\(=\left(x+y\right)\left(z^2+xz+yz+xy\right)\)

\(=\left(x+y\right)\left[z\left(x+z\right)+y\left(x+z\right)\right]\)

\(=\left(x+y\right)\left(y+z\right)\left(x+z\right)\)