Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1009 , 1013 , 1019 , 1021 , 1031 , 1033 , 1039 , 1049 , 1051 , 1061 , ........... , 7879 , 7883 , 7901 , 7907 , 7919 .
A=\(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{2014}{2015}.\frac{2015}{2016}\)
A=\(\frac{1.2.3.4...2015}{2.3.4...2016}=\frac{1}{2016}\)
Hok tốt
A = \(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{2015}\right).\left(1-\frac{1}{2016}\right)\)
= \(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{2014}{2015}.\frac{2015}{2016}\)
= \(\frac{1}{2016}\)
Vậy ...
+) \(500=2^2.5^3\)
+) \(420=2^2.3.5.7\)
+) \(625=5^4\)
+) \(788=2^2.197\)
Học tốt
Gọi 2 số đó là 2k+1 và 2k+3 (k \(\in\)N).
Đặt ƯCLN(2k+1, 2k+3)=d
=> (2k+3)-(2k+1) chia hết cho d
=> 2k+3-2k-1 = 2 chia hết cho d
=> d \(\in\)Ư(2)={1; 2}
Mà d \(\ne\)2 (2k+1 và 2k+3 đều lẻ)
=> ƯCLN(2k+1, 2k+3)=d=1
Vậy 2 số lẻ liên tiếp nguyên tố cùng nhau (đpcm).
Gọi ƯCLN(a;a+2)=d(a lẻ)
Ta có: a chia hết cho d
a+2 chia hết cho d
=>a+2-a chia hết cho d
=>2 chia hết cho d mà a lẻ
nên ƯCLN(a;a+2)=1
Vậy thỏa mãn đề 2 số lẻ liên tiếp là 2 số nguyên tố cùng nhau
9699690=2x3x5x7x11x13x17x19
9699690 = 2 x 3 x 5 x 7 x 11 x 13 x 17 x 19