Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\\ =\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2\right)-3xy\left(x+y+z\right)\\ =\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)
\(x^3+y^3+z^3-3xyz\)
\(=\left(x^3+3x^2y+3xy^2+y^3\right)+z^3-3x^2y-3xy^2-3xyz\)
\(=\left(x+y\right)^3+z^3-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)
Sửa đề: \(x^3+y^3+z^3-3xyz\)
\(=\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz\)
\(=\left(x+y+z\right)\left[\left(x+y\right)^2-z\left(x+y\right)+z^2\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)\)
Ta có:
x³ + y³ + z³ - 3xyz = (x+y)³ - 3xy(x-y) + z³ - 3xyz
= [(x+y)³ + z³] - 3xy(x+y+z)
= (x+y+z)³ - 3z(x+y)(x+y+z) - 3xy(x-y-z)
= (x+y+z)[(x+y+z)² - 3z(x+y) - 3xy]
= (x+y+z)(x² + y² + z² + 2xy + 2xz + 2yz - 3xz - 3yz - 3xy)
= (x+y+z)(x² + y² + z² - xy - xz - yz).
\(x^3+y^3+z^3+3xyz\)
\(=\left(x+y\right)^3-3xy\left(x+y\right)+z^3+3xyz\)
\(=\left(x+y\right)^3-3xy\left(x+y+z\right)+z^3\)
\(=\left(x+y+z\right)^3-3\left(x+y\right)z\left(x+y+z\right)-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)^3-3\left(x+y+z\right)\left(xy+yz+xz\right)\)
\(=\left(x+y+z\right)\left[\left(x+y+z\right)^2-3xy-3yz-3xz\right]\)
\(\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)
Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
\(x^3+y^3+z^3-3xyz\)
\(=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\)
\(=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)
\(x^3+y^3+z^3-3xyz\)
\(=\left(x+y\right)^3-3x^2y-3xy^2+z^3-3xyz\)
\(=\left[\left(x+y\right)^3+z^3\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left[\left(x+y\right)^2-z\left(x+y\right)+z^2\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+2xy-xz-yz+z^2-3xyz\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xz-yz-xy\right)\)
Ta có:
x³ + y³ + z³ - 3xyz = (x+y)³ - 3xy(x-y) + z³ - 3xyz
= [(x+y)³ + z³] - 3xy(x+y+z)
= (x+y+z)³ - 3z(x+y)(x+y+z) - 3xy(x-y-z)
= (x+y+z)[(x+y+z)² - 3z(x+y) - 3xy]
= (x+y+z)(x² + y² + z² + 2xy + 2xz + 2yz - 3xz - 3yz - 3xy)
= (x+y+z)(x² + y² + z² - xy - xz - yz).
~~~~~~~~
Bài làm trên mình đã sử dụng hằng đẳng thức đáng nhớ sau:
(a+b)³ = a³ + 3a²b + 3ab² + b³ = a³ + b³ + 3ab(a-b)
=> a³ + b³ = (a+b)³ - 3ab(a-b).
Chúc bạn học giỏi!
x³ + y³ + z³ - 3xyz = (x + y)³ - 3xy(x + y) + z³ - 3xyz
= (x + y)³ + z³ - 3xy(x + y + z)
= (x + y + z)³ - 3(x + y + z)(x + y)z - 3xy(x + y + z)
= (x + y + z)³ - 3(x + y + z)(xy + yz + zx)
= (x + y + z)[(x + y + z)² - 3xy - 3yz - 3zx)]
= (x + y + z)(x² + y² + z² - xy - yz - zx)