K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2016

      \(\left(x+2\right)\times\left(x+4\right)\times\left(x+6\right)\times\left(x+8\right)+16\)

\(=\left(x+2\right)\times\left(x+8\right)\times\left(x+4\right)\times\left(x+6\right)+16\)

\(=\left(x^2+10x+16\right)\times\left(x^2+10x+24\right)+16\)

Đặt \(t=x^2+10x+16\), ta được :

       \(t\times\left(t+8\right)+16\)

\(=t^2+8t+16\)

\(=\left(t+4^2\right)\)

Thay \(t=x^2+10x+16\), ta được :

      \(\left(x^2+10x+16\right)^2\)

\(=\left[\left(x+2\right)\times\left(x+8\right)\right]^2\)

\(=\left(x+2\right)^2\times\left(x+8\right)^2\)

\(=\left(x+2\right)^2\left(x+8\right)^2\)

_ Vậy \(\left(x+2\right)\times\left(x+4\right)\times\left(x+6\right)\times\left(x+8\right)+16\)\(=\left(x+2\right)^2\left(x+8\right)^2\)

1 tháng 8 2016

Ta có:

 \(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+16=\left(x+2\right)\left(x+8\right)\left(x+4\right)\left(x+6\right)+16\)

\(=\left(x^2+8x+2x+16\right)\left(x^2+6x+4x+24\right)+16\)

\(=\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16\)

\(=\left(x^2+10x+16\right)\left(x^2+10x+16+8\right)+16\)

\(=\left(x^2+10x+16\right)\left(x^2+10x+16\right)+8\left(x^2+10x+16\right)+16\)

\(=\left(x^2+10x+16\right)^2+2.\left(x^2+10x+16\right).4+4^2\)

\(=\left(x^2+10x+16+4\right)^2=\left(x^2+10+20\right)^2\)

k nha!!

\(\text{( x + 2 ) ( x + 4 ) ( x + 6 ) ( x + 8 ) + 16}\)

\(\text{Phân tích thành nhân tử :}\)

\(\left(x^2+10x+20\right)^2\)

9 tháng 7 2015

(x+2)(x+4)(x+6)(x+8)+16 

=(x+2)(x+8)(x+4)(x+6)+16

=(x2+10x+16)(x2+10x+24)+16

đặt t=x2+10x+16 ta được:

t.(t+8)+16

=t2+8t+16

=(t+4)2

thay t=x2+10x+16 ta được:

(x2+10x+16)2

=[(x+2)(x+8)]2

 

=(x+2)2(x+8)2

vậy (x+2)(x+4)(x+6)(x+8)+16 =(x+2)2(x+8)2

9 tháng 7 2015

(x+2)(x+4)(x+6)(x+8)+16 

=(x+2)(x+8)(x+4)(x+6)+16

=(x2+10x+16)(x2+10x+24)+16

đặt t=x2+10x+16 ta được:

t.(t+8)+16

=t2+8t+16

=(t+4)2

thay t=x2+10x+16 ta được:

(x2+10x+16)2

=[(x+2)(x+8)]2

=(x+2)2(x+8)2

vậy (x+2)(x+4)(x+6)(x+8)+16 =(x+2)2(x+8)2

8 tháng 10 2019

ta có

\(5x=-3y=4z\)

\(\Rightarrow\frac{x}{12}=-\frac{y}{20}=\frac{z}{15}\)

\(\Rightarrow\frac{x}{12}=-\frac{y}{20}=\frac{3z}{45}=\frac{x-y+3z}{12+20+45}=\frac{7}{77}=\frac{1}{11}\)

\(\Rightarrow\hept{\begin{cases}x=\frac{1}{11}.12=\frac{12}{11}\\-y=\frac{1}{11}.20=\frac{20}{11}\\3z=\frac{1}{11}.45=\frac{45}{11}\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=\frac{12}{11}\\y=-\frac{20}{11}\\z=\frac{45}{11}:3=\frac{15}{11}\end{cases}}\)

Vậy \(\hept{\begin{cases}x=\frac{12}{11}\\y=\frac{-20}{11}\\z=\frac{15}{11}\end{cases}}\)

Ta có: (x+2)(x+4)(x+6)(x+8)+16

=[(x+2)(x+8)]+[(x+4)(x+6)]+16

\(=\left[x^2+10x+16\right]\left[x^2+10x+24\right]+16\) (1)

Đặt \(x^2+10x+16=t\), khi đó (1) trở thành:

\(t\left(t+8\right)+16=t^2+8t+16=\left(t+4\right)^2\)

Thay \(x^2+10x+16=t\), ta có: \(\left(x^2+10x+16+4\right)^2=\left(x^2+10x+20\right)^2\)

Có gì đó sai sai á nhờ :vv?

12 tháng 10 2020

( x + 2 )( x + 4 )( x + 6 )( x + 8 ) + 16

= [ ( x + 2 )( x + 8 ) ][ ( x + 4 )( x + 6 ) ] + 16

= ( x2 + 10x + 16 )( x2 + 10x + 24 ) + 16 (*)

Đặt t = x2 + 10x + 20 

(*) <=> ( t - 4 )( t + 4 ) + 16

      = t2 - 16 + 16

      = t2 = ( x2 + 10x + 20 )2

1: =(x+y-3x)(x+y+3x)

=(-2x+y)(4x+y)

2: =(3x-1-4)(3x-1+4)

=(3x+3)(3x-5)

=3(x+1)(3x-5)

3: =(2x)^2-(x^2+1)^2

=-[(x^2+1)^2-(2x)^2]

=-(x^2+1-2x)(x^2+1+2x)

=-(x-1)^2(x+1)^2

4: =(2x+1+x-1)(2x+1-x+1)

=3x(x+2)

5: =[(x+1)^2-(x-1)^2][(x+1)^2+(x-1)^2]

=(2x^2+2)*4x

=8x(x^2+1)

6: =(5x-5y)^2-(4x+4y)^2

=(5x-5y-4x-4y)(5x-5y+4x+4y)

=(x-9y)(9x-y)

7: =(x^2+xy+y^2+xy)(x^2+xy-y^2-xy)

=(x^2+2xy+y^2)(x^2-y^2)

=(x+y)^3*(x-y)

8: =(x^2+4y^2-20-4xy+16)(x^2+4y^2-20+4xy-16)

=[(x-2y)^2-4][(x+2y)^2-36]

=(x-2y-2)(x-2y+2)(x+2y-6)(x+2y+6)

2 tháng 8 2016

\(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+16\)

\(=\left(x+2\right)\left(x+8\right)\left(x+4\right)\left(x+6\right)+16\)

\(=\left(x^2+8x+2x+16\right)\left(x^2+6x+4x+24\right)+16\)

\(=\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16\)

\(=\left(x^2+10x+16\right)\left(x^2+10+16+8\right)+16\)

\(=\left(x^2+10x+16\right)^2+2.\left(x^2+10x+16\right).4+4^2\)

\(=\left(x^2+10x+16+4\right)^2\)

\(=\left(x^2+10+20\right)^2\)

 

2 tháng 8 2016

\(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+16\)
\(=\left[\left(x+2\right)\left(x+8\right)\right]\left[\left(x+4\right)\left(x+6\right)\right]+16\)
\(=\left(x^2+8x+2x+16\right) \left(x^2+6x+4x+24\right)+16\)
\(=\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16\left(1\right)\)
\(\text{Đặt }x^2+10x+\frac{16+24}{2}=t\)
\(\text{hay }x^2+10x+20=t\)
\(\left(1\right)\Rightarrow\left(t-4\right)\left(t+4\right)+16\)
\(=t^2-4^2+16\)
\(=t^2-16+16\)
\(=t^2\)
\(=\left(x^2+10x+20\right)^2\)
 

24 tháng 9 2019

\(\left(x-2\right)\left(x-4\right)\left(x-6\right)\left(x-8\right)+16\)

\(=\left[\left(x-2\right)\left(x-8\right)\right]\left[\left(x-4\right)\left(x-6\right)\right]+16\)

\(=\left(x^2-10x+16\right)\left(x^2-10x+24\right)+16\)(1) 

Đặt \(x^2-10x+20=t\)thay vào (1) ta được : 

\(\left(t-4\right)\left(t+4\right)+16\)

\(=t^2-16+16\)

\(=t^2\)Thay \(t=x^2-10x+20\)ta được :

\(\left(x^2-10x+20\right)^2\)

\(=\left(x^2-2.5.x+25-25+20\right)^2\)

\(=\left[\left(x-5\right)^2-5\right]^2\)

\(=\left(x-5-\sqrt{5}\right)^2\left(x-5+\sqrt{5}\right)^2\)

29 tháng 7 2016

1/ \(\left(x^2+x+4\right)^2+8x\left(x^2+x+4\right)+15x^2=x^4+10x^3+32x^2+40x+16\)(làm tắt nhưng chắc bạn tự hiểu đc)

\(=\left(x^4+2x^3\right)+\left(4x^2+2x^3\right)+\left(12x^2+6x^3\right)+\left(4x^2+8x\right)+\left(12x^2+24x\right)+\left(8x+16\right)\)

\(=x^3\left(x+2\right)+2x^2\left(2+x\right)+6x^2\left(2+x\right)+4x\left(x+2\right)+12x\left(x+2\right)+8\left(x+2\right)\)

\(=\left(x+2\right)\left(x^3+2x^2+6x^2+4x+12x+8\right)=\left(x+2\right)\left(x^3+8x^2+16x+8\right)\)

\(=\left(x+2\right)\left[\left(x^3+2x^2\right)+\left(6x^2+12x\right)+\left(4x+8\right)\right]=\left(x+2\right)\left[x^2\left(x+2\right)+6x\left(x+2\right)+4\left(x+2\right)\right]\)

\(=\left(x+2\right)\left(x+2\right)\left(x^2+6x+4\right)\)

29 tháng 7 2016

2/ \(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+16=x^4+20x^3+140x^2+400x+400\)

\(=\left(x^4+10x^3+20x^2\right)+\left(10x^3+100x^2+200x\right)+\left(20x^2+200x+400\right)\)

\(=x^2\left(x^2+10x+20\right)+10x\left(x^2+10x+20\right)+20\left(x^2+10x+20\right)\)

\(=\left(x^2+10x+20\right)\left(x^2+10x+20\right)=\left(x^2+10x+20\right)^2\)