Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^8+3x^4+4\)
\(=\left(x^8-x^6+2x^4\right)+\left(x^6-x^4+2x^2\right)+\left(2x^4-2x^2+4\right)\)
\(=x^4\left(x^4-x^2+2\right)+x^2\left(x^4-x^2+2\right)+2\left(x^4-x^2+2\right)\)
\(=\left(x^4+x^2+2\right)\left(x^4-x^2+2\right)\)
\(4x^4+4x^3+5x^2+2x+1\)
\(=\left(4x^4+2x^3+2x^2\right)+\left(2x^3+x^2+x\right)+\left(2x^2+x+1\right)\)
\(=2x^2\left(2x^2+x+1\right)+x\left(2x^2+x+1\right)+\left(2x^2+x+1\right)\)
\(=\left(2x^2+x+1\right)^2\)
x8 + x4 +1 = ( x8 + x7 + x6) - ( x7 + x6 + x5 ) + ( x5 + x4 + x3 ) - (x3 - x2 - x ) + ( x2 + x + 1)
= x6( x2 + x + 1 ) - x5( x2 + x + 1 ) + x3( x2 + x +1 ) - x( x2 + x +1 ) + ( x2 + x +1 )
= ( x2 + x +1 )( x6 - x5 + x3 - x + 1 )
x8 + x4 +1 = (x8 + 2x4 + 1) - x4
= (x4 +1)2 - x4 = (x4 - x2 + 1)(x4 + x2 + 1)
x8+x4+1
=(x8+2x4+1)-x4
=(x4+1)2-(x2)2
=(x4+1-x2)(x4+1+x2)
=(x4+1-x2)(x4+2x2-x2+1)
=(x4+1-x2)[(x2+1)2-x2]
=(x4+1-x2)(x2-x+1)(x2+x+1)
\(x^8+x^7+1=x^8-x^2+x^7-x+\left(x^2+x+1\right)=x^2\left(x^6-1\right)+x\cdot\left(x^6-1\right)+\left(x^2+x+1\right)\)
\(=x^2\left(x^3+1\right)\left(x-1\right)\left(x^2+x+1\right)+x\cdot\left(x^3+1\right)\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^6-x^5+x^3-x^2+x^5-x^4+x^2-x+1\right)=\left(x^2+x+1\right)\left(x^6-x^4+x^3-x+1\right)\)
Ta có : x8 + 1
= ( x4 )2 + 12
= ( x4 + 1 )2 - 2x4
\(x^8+1\)
\(=x^8+2x^4+1-2x^4\)
\(=\left(x^4+1\right)^2-\left(\sqrt{2}x\right)^2\)
\(=\left(x^4+1+\sqrt{2}x\right)\left(x^4+1-\sqrt{2}x\right)\)