Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=x^2\left(x-2\right)\)
b: \(=\left(y+1\right)^2-x^2=\left(y+1+x\right)\left(y+1-x\right)\)
c: =(x-3)(x+2)
\(=x^2\left(x+y\right)-\left(x+y\right)=\left(x^2-1\right)\left(x+y\right)=\left(x-1\right)\left(x+1\right)\left(x+y\right)\)
1.
\(\left(12x^2+6x\right)\left(y+z\right)+\left(12x^2+6x\right)\left(y-z\right)\\ =\left(12x^2+6x\right)\left(y+z+y-z\right)\\ =2y\left(12x^2+6x\right)\\ =2y.6x\left(2x+1\right)\\ =12xy\left(2x+1\right)\)
2.
\(x\left(x-6\right)+10\left(x-6\right)=0\\ \Leftrightarrow\left(x-6\right)\left(x+10\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=6\\x=-10\end{matrix}\right.\)
Vậy \(x\in\left\{6;-10\right\}\) là nghiệm của pt
Bài 1:
Ta có: \(\left(12x^2+6x\right)\left(y+z\right)+\left(12x^2+6x\right)\left(y-z\right)\)
\(=\left(12x^2+6x\right)\left(y+z+y-z\right)\)
\(=6x\left(2x+1\right)\cdot2y\)
\(=12xy\left(2x+1\right)\)
Bài 2:
Ta có: \(x\left(x-6\right)+10\left(x-6\right)=0\)
\(\Leftrightarrow\left(x-6\right)\left(x+10\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-10\end{matrix}\right.\)
d) x^6 + y^6 = (x^2)^3 + (y^2)^3
= (x^2 + y^2)(X^2 - x^2.y^2 + y^2)
c) = (x+y)^3 + 3(x+y)^2z + 3((x+y)z^2 + z^3 - X^3 - Y^3 - z^3
= (x+y)^3 + 3(x+y)^2z + 3((x+y)z^2 - (x+y)(x^2 - xy + y^2)
= (x+y)[(x+y)^2 + 3(x+y)z + 3z^2 - x^2 + xy - y^2]
= (X+y)(x^2 + 2xy + y^2 + 3xz + 3yz + 3z^2 - x^2 + xy - y^2)
= (x+y)(3xy + 3xz + 3z^2 + 3yz)
= (x+y)[3x(y+z) + 3z(y+z)]
=3(x+y)(y+z)(x+z)
Đúng thì
=