Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x2 - 2x + 2y - xy = (x2 - 2x) - (xy - 2y) = x(x - 2) - y(x - 2) = (x - 2)(x - y)
x2 + 4xy - 16 + 4y2 = (x2 + 4xy + 4y2) - 16 = (x + 2y)2 - 16 = (x + 2y + 4)(x + 2y - 4)
\(x^4y-3x^3y^2+3x^2y^3+xy^4=xy\left(x^3-3x^2y+3xy^2+y^3\right)\)
a)x^2-4xy+4y^2-4
=(x2-4xy+4y2)-4
=(x-2y)2-4
=(x-2y+2)(x-2y-2)
b)16-x^2+2xy-y^2
=16-(x2-2xy+y2)
=16-(x-y)2
=[4-(x-y)][4+(x-y)]
=(4-x+y)(4+x-y)
phân tích đa thức thành nhân tử
a) 4x^2+8xy-3x-6y
b)x^4y-3x^3y^2+3x^2y^3+xy^4
c)x^3-5x^2-14x
d)x^4+4y^4
\(4x^2+8xy-3x-6y=4x\left(x+2y\right)-3\left(x+2y\right)=\left(4x-3\right)\left(x+2y\right)\)
\(x^4y-3x^3y^2+3x^2y^3-xy^4=xy\left(x^3-3x^2y+3xy^2-y^3\right)=xy\left(x-y\right)^3\)
\(x^3-5x^2-14x=x\left(x^2-5x-14\right)=x\left(x^2-7x+2x-14\right)=x\left[x\left(x-7\right)+2\left(x-7\right)\right]=x\left(x-7\right)\left(x+2\right)\)
\(x^4+4y^4=\left(x^2\right)^2+2\times x^2\times2y^2+\left(2y^2\right)^2-4x^2y^2=\left(x^2+2y^2\right)^2-\left(2xy\right)^2=\left(x^2-2xy+2y^2\right)\left(x^2+2xy+2y^2\right)\)
y^4+64
=(y^2)^2+16y^2+64-16y^2
=(y^2+8-4x)(x^2+8+4x)
x^2+4
=x^2+2x^2+4-2x^2
=(x+2)^2-2x^2
=(x^2+2-2x)(x^2+2+2x)
x^4+16
=(x^2)^2+4x^2+16-4x^2
=(x+4)^2-4x^2
=(x^2+4-4x)(x^2+4+4x)
x^4y^4+4
=x^4y^4+4x^4+2^2-4x^4
=(x^4y^4+2)^2-(2x^2)^2
=(x^4y^4+2+2x^2)(x^4y^4+2-2x^2)
4x^4y^4+1
=4x^4y^4+x^4+1-x^4
=(2x^4y^4+1)^2-(x^2)^2
=(2x^4y^4+1-x^2)(2x^4y^4+1+x^2)
Mình ko bt câu D đúng hay sai nữa. Mà lỡ sai bạn đừng giận mình nha!
1: =(x+y-3x)(x+y+3x)
=(-2x+y)(4x+y)
2: =(3x-1-4)(3x-1+4)
=(3x+3)(3x-5)
=3(x+1)(3x-5)
3: =(2x)^2-(x^2+1)^2
=-[(x^2+1)^2-(2x)^2]
=-(x^2+1-2x)(x^2+1+2x)
=-(x-1)^2(x+1)^2
4: =(2x+1+x-1)(2x+1-x+1)
=3x(x+2)
5: =[(x+1)^2-(x-1)^2][(x+1)^2+(x-1)^2]
=(2x^2+2)*4x
=8x(x^2+1)
6: =(5x-5y)^2-(4x+4y)^2
=(5x-5y-4x-4y)(5x-5y+4x+4y)
=(x-9y)(9x-y)
7: =(x^2+xy+y^2+xy)(x^2+xy-y^2-xy)
=(x^2+2xy+y^2)(x^2-y^2)
=(x+y)^3*(x-y)
8: =(x^2+4y^2-20-4xy+16)(x^2+4y^2-20+4xy-16)
=[(x-2y)^2-4][(x+2y)^2-36]
=(x-2y-2)(x-2y+2)(x+2y-6)(x+2y+6)
16) 2x + 2y - x2 - xy = ( 2x + 2y ) - ( x2 + xy ) = 2( x + y ) - x( x + y ) = ( x + y )( 2 - x )
17) x2 - 2x - 4y2 - 4y = ( x2 - 4y2 ) - ( 2x + 4y ) = ( x - 2y )( x + 2y ) - 2( x + 2y ) = ( x + 2y )( x - 2y - 2 )
18) x2y - x3 - 9y + 9x = ( x2y - x3 ) - ( 9y - 9x ) = x2( y - x ) - 9( y - x ) = ( y - x )( x2 - 9 ) = ( y - x )( x - 3 )( x + 3 )
19) x2( x - 1 ) + 16( 1 - x ) = x2( x - 1 ) - 16( x - 1 ) = ( x - 1 )( x2 - 16 ) = ( x - 1 )( x - 4 )( x + 4 )
20) 2x2 + 3x - 2xy - 3y = ( 2x2 - 2xy ) + ( 3x - 3y ) = 2x( x - y ) + 3( x - y ) = ( x - y )( 2x + 3 )
20, \(2x^2+3x-2xy-3y=2x\left(x-y\right)+3\left(x-y\right)=\left(2x+3\right)\left(x-y\right)\)
16, \(2x+2y-x^2-xy=2\left(x+y\right)-x\left(x+y\right)=\left(2-x\right)\left(x+y\right)\)
17, \(x^2-2x-4y^2-4y=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)=\left(x-2y-2\right)\left(x+2y\right)\)
18, \(x^2y-x^3-9y+9x=-x\left(x^2-9\right)+y\left(x^2-9\right)=\left(-x-y\right)\left(x^2-9\right)=\left(y-x\right)\left(x-3\right)\left(x+3\right)\)
19, \(x^2\left(x-1\right)+16\left(1-x\right)=x^2\left(x-1\right)-16\left(x-1\right)=\left(x^2-16\right)\left(x-1\right)=\left(x-4\right)\left(x+4\right)\left(x-1\right)\)
a) `x^4+2x^3-4x-4`
`=(x^4-4)+(2x^3-4x)`
`=(x^2-2)(x^2+2)+2x(x^2-2)`
`=(x^2-2)(x^2+2+2x)`
b) `x^3-4x^2+12x-27`
`=(x^3-27)-(4x^2-12x)`
`=(x-3)(x^2+3x+9)-4x(x-3)`
`=(x-3)(x^2+3x+9-4x)`
`=(x-3)(x^2-x+9)`
c) `xy-4y-5x+20`
`=y(x-4)-5(x-4)`
`=(y-5)(x-4)`
a) Ta có: \(x^4+2x^3-4x-4\)
\(=\left(x^4-4\right)+2x^3-4x\)
\(=\left(x^2-2\right)\left(x^2+2\right)+2x\left(x^2-2\right)\)
\(=\left(x^2-2\right)\left(x^2+2x+2\right)\)
b) Ta có: \(x^3-4x^2+12x-27\)
\(=\left(x-3\right)\left(x^2+3x+9\right)-4x\cdot\left(x-3\right)\)
\(=\left(x-3\right)\left(x^2-x+9\right)\)
c) Ta có: \(xy-4y-5x+20\)
\(=y\left(x-4\right)-5\left(x-4\right)\)
\(=\left(x-4\right)\left(y-5\right)\)
a) x2 - y2 - 4x + 4y
= (x2 - 4x + 4) - (y2 - 4y + 4)
= (x - 2)2 - (y - 2)2
= (x - 2 - y + 2)(x - 2 + y - 2)
= (x - y)(x + y - 4)
b) (xy + 4)2 - 4(x + y)2
= (xy + 4)2 - [2(x + y)]2
= (xy + 4)2 - (2x + 2y)2
= (xy + 4 - 2x - 2y)(xy + 4 + 2x + 2y)
c) 25 - x2 + 2xy - y2
= 25 - (x2 - 2xy + y2)
= 52 - (x - y)2
=> (5 - x + y)(5 + x - y)
a) \(x^2-y^2-4x+4y=\left(x^2-y^2\right)-\left(4x-4y\right)=\left(x+y\right)\left(x-y\right)-4\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y-4\right)\)
b) \(\left(xy+4\right)^2-4\left(x+y\right)^2=\left(xy+4\right)^2-\left(2x+2y\right)^2=\left(xy+4+2x+2y\right)\left(xy+4-2x-2y\right)\)
c) \(25-x^2+2xy-y^2=25-\left(x^2-2xy+y^2\right)=5^2-\left(x-y\right)^2=\left(5+x-y\right)\left(5-x+y\right)\)
\(x^4y^4+16+\left(xy+2\right)^4=t^4+16+\left(t+2\right)^4\)(\(t=xy\))
\(=t^4+16+\left(t^2+4t+4\right)^2=t^4+16+\left(t^2+2t+4\right)^2+4t\left(t^2+2t+4\right)+4t^2\)
\(=\left(t^2+2t+4\right)^2+t^4+4t^3+12t^2+16t+16\)
\(=2\left(t^2+2t+4\right)^2\)
\(=2\left(x^2y^2+2xy+4\right)^2\)