Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x^3-3x^2+3x-1=x^3+x^3-3x^2+3x-1\)
=\(x^3+\left(x^3-3x^2+3x-1\right)\)=\(x^3+\left(x-1\right)^3\)
=\(\left(x+x-1\right)\left(x^2-x\left(x-1\right)+\left(x-1\right)^2\right)\)
=\(\left(2x-1\right)\left(x^2-x^2+x+x^2-2x+1\right)\)
=\(\left(2x-1\right)\left(x^2-x+1\right)\)
dat \(x^2-2x+2=y\)
ta co pt
\(y^4+20x^2y^2+64x^4\)
\(=\left(8x^2\right)^2+2.8x^2.\frac{10}{8}y^2+\left(\frac{10^{ }}{8^{ }}y^2\right)^2-\frac{36}{64}y^4\)
\(=\left(8x^2+\frac{10}{8}y^2\right)^2-\left(\frac{6}{8}y^2\right)^2\)
\(=\left(8x^2+\frac{y^2}{2}\right)\left(8x^2+2y^2\right)\)
bạn thay y nữa là xong
\(\left(x^2-2x+2\right)^4+20x^2\left(x^2-2x+2\right)^2+64x^4\)
\(=\left(x^2-2x+2\right)^4+20x^2\left(x^2-2x+2\right)^2+100x^4-36x^4\)
\(=\left[\left(x^2-2x+2\right)^2+10x^2\right]^2-36x^4\)
\(=\left(x^4-4x^3+18x^2-8x+4\right)^2-\left(6x^2\right)^2\)
\(=\left(x^4-4x^3+24x^2-8x+4\right)\left(x^4-4x^3+12x^2-8x+4\right)\)
\(\left(x^2-2x+2\right)^4+20x^2\left(x^2-2x+2\right)+64x^4\)
=\(\left[\left(x^2-2x+2\right)^4+2.10x^2\left(x^2-2x+2\right)^2+100x^4\right]\)-100x4+64x2
=\(\left[\left(x^2-2x+2\right)^2+10x^2\right]^2-36x^2\)
=\(\left[\left(x^2-2x+2\right)^2+4x^2\right].\left[\left(x^2-2x+2\right)^2+16x^2\right]\)
Đây là cách hiện đại :
\(x^4-2x^3+2x-1\)
\(=\left(x^4-1\right)-\left(2x^3-2x\right)\)
\(=\left(x^2-1\right)\left(x^2+1\right)-2x\left(x^2-1\right)\)
\(=\left(x^2-1\right)\left(\left(x^2+1\right)-2x\right)\)
\(=\left(x+1\right)\left(x-1\right)\left(\left(x^2+1\right)-2x\right)\)
a,=\(x^4-x^3-x^3+x^2-x^2+x+x-1\)
cu hai so nhom 1 nhom roi dat thua so chung la xong
b,x^4+x^3+x^3+x^2+x^2+x+x+1
cu hai so lai nhom 1 nhom va dat thua so chung
Ta có:
x4+2x3+x2+x+1=(x2)2+2.x2.x+x2+x+1
=(x2+x)+(x+1)
=x2+2x+1
=(x+1)2
a) 2x + 2y - x2 - xy
= 2(x + y) + x(x + y)
= (x + y) (x + 2)
mk ko bít phân tích đúng ko đúng thì t i c k nhé!! 245433463463564564574675687687856856846865855476457
a)\(2x+2y-x^2-xy=2\left(x+y\right)-x\left(x+y\right)=\left(2-x\right)\left(x+y\right)\)
b)\(\left(x+3\right)^2-\left(2x-5\right)\left(x+3\right)\)
\(=\left(x+3\right)\left[\left(x+3\right)-\left(2x-5\right)\right]\)
\(=\left(x+3\right)\left(8-x\right)\)
c)\(\left(3x+2\right)^2+\left(3x-2\right)^2-2\left(9x^2-4\right)\)
\(=\left(3x+2\right)^2+\left(3x-2\right)^2-2\left(3x-2\right)^2\)
\(=\left(3x+2\right)\left[\left(3x+2\right)-\left(3x-2\right)\right]+\left(3x-2\right)\left[\left(3x-2\right)-\left(3x+2\right)\right]\)
\(=4\left(3x+2\right)-4\left(3x-2\right)\)
\(=4\left(3x+2-3x+2\right)\)
=4.4=16
a)\(2x^3+3x^2+2x+3=0\)
\(\Leftrightarrow2x^3+2x+3x^2+3=0\)
\(\Leftrightarrow2x\left(x^2+1\right)+3\left(x^2+1\right)=0\)
\(\Leftrightarrow\left(2x+3\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}2x+3=0\\x^2+1=0\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}2x=-3\\x^2+1>0\left(loai\right)\end{array}\right.\)
\(\Leftrightarrow x=-\frac{3}{2}\)
b)\(x\left(2x-1\right)\left(1-2x\right)=0\)
\(\Leftrightarrow-x\left(2x-1\right)\left(2x-1\right)=0\)
\(\Leftrightarrow-x\left(2x-1\right)^2=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}-x=0\\\left(2x-1\right)^2=0\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\2x=1\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=\frac{1}{2}\end{array}\right.\)
\(2x^3+3x^2+2x+3=0\)
\(2x\left(x^2+1\right)+3\left(x^2+1\right)=0\)
\(\left(2x+3\right)\left(x^2+1\right)=0\)
\(2x+3=0\left(x^2+1\ge1>0\right)\)
\(2x=-3\)
\(x=-\frac{3}{2}\)
\(x\left(2x-1\right)\left(1-2x\right)=0\)
\(\left[\begin{array}{nghiempt}x=0\\2x-1=0\\1-2x=0\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=0\\2x=1\\2x=1\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=0\\x=\frac{1}{2}\end{array}\right.\)
x^4 - 2x^3 - 2x^2 - 2x - 3
=x^4 + x^3 - 3x^3 - 3x^2 + x^2 + x - 3x - 3
=x^3(x+1) - 3x^2(x+1) + x(x+1 ) - 3(x+1)
=(x+1)(x^3 - 3x^2 + x - 3)
=(x+1)[x^2 (x - 3) + x - 3]
=(x+1)(x - 3)(x^2 + 1)