Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-2x+2=\left(x^2-2x+1\right)+1=\left(x-1\right)^2+1\)
Ta có: \(\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-1\right)^2+1\ge1\forall x\)
\(\Rightarrow\left(x-1\right)^2+1>0\forall x\)
\(\Rightarrow\)đa thức \(x^2-2x+2\)vô nghiệm
\(\Rightarrow\)đa thức \(x^2-2x+2\)không phân tích được thành nhân tử
Cái kia tương tự
Tham khảo nhé~
\(2\left(x^2+x+1\right)^2-\left(2x+1\right)^2-\left(x^2+2x\right)^2\)
\(=2\left(x^4+2x^3+3x^2+2x+1\right)-4x^2-4x-1-x^4-4x^3-4x^2\)
\(=2x^4+4x^3+6x^2+4x+2-4x^2-4x-1-x^4-4x^3-4x^2\)
\(=x^4-2x^2+1\)
\(=\left(x^2-1\right)^2\)
\(=\left[\left(x-1\right)\left(x+1\right)\right]^2\)
\(=\left(x-1\right)^2\left(x+1\right)^2\)
Chúc bạn học tốt.
Ta có \(\left(1+2x\right)\left(1-2x\right)-x\left(x+2\right)\left(x-2\right)\)
\(=1-4x^2-x\left(x^2-4\right)=1-4x^2-x^3+4x\)
\(=\left(1-x^4\right)+4x\left(1-x\right)=\left(1-x\right)\left(x^2+x+1\right)+4x\left(1-x\right)\)
\(=\left(1-x\right)\left(x^2+5x+1\right)\)
a) x3-2x2-x+2
=x(x2-1)+2(-x2+1)
=x(x2-1)-2(x2-1)
=(x2-1)(x-2)
b)
x2+6x-y2+9
=x2+6x+9-y2
=(x+3)2-y2
=(x+3-y)(x+3+y)
x(x+2)(x^2+2x+2)+1
(x^2+2x)(x^2+2x+2)+1
dat x^2+2x=a
=> a(a+2)+1
=a^2+2a+1
=(a+1)^2
=(x^2+2x+1)^2
=(x+1)^4
x(x+2)(x^2+2x+2)+1
(x^2+2x)(x^2+2x+2)+1
dat x^2+2x=a
=> a(a+2)+1
=a^2+2a+1
=(a+1)^2
=(x^2+2x+1)^2
=(x+1)^4