Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x4 + 3x2 +4
= x4 + 4x2 + 4 - x2
= ( x2 + 2 )2 - x2= ( x2 +
= ( x2 - x + 2) * ( x2 + x + 2)
Không biết có đúng không ...
Trả lời:
x4 - 3x3 + 3x2 - x
= x ( x3 - 3x2 + 3x - 1 )
= x ( x - 1 )3
Ta có :
\(x^4-3x^3+3x^2-x\)
\(=x\left(x^3-3x^2+3x-1\right)\)
\(=x\left(x-1\right)^3\)
Vậy ..........
\(x^8+3x^4+4\)
\(=\left(x^8-x^6+2x^4\right)+\left(x^6-x^4+2x^2\right)+\left(2x^4-2x^2+4\right)\)
\(=x^4\left(x^4-x^2+2\right)+x^2\left(x^4-x^2+2\right)+2\left(x^4-x^2+2\right)\)
\(=\left(x^4+x^2+2\right)\left(x^4-x^2+2\right)\)
\(4x^4+4x^3+5x^2+2x+1\)
\(=\left(4x^4+2x^3+2x^2\right)+\left(2x^3+x^2+x\right)+\left(2x^2+x+1\right)\)
\(=2x^2\left(2x^2+x+1\right)+x\left(2x^2+x+1\right)+\left(2x^2+x+1\right)\)
\(=\left(2x^2+x+1\right)^2\)
Ta có:
\(C_1:\left(3x+1\right)^2-4\left(x-2\right)^2=\left(9x^2+6x+1\right)-4\left(x^2-4x+4\right)\)
\(=9x^2+6x+1-4x^2+16x-16=5x^2+22x-15=5x\left(x+5\right)-3\left(x+5\right)=\left(5x-3\right)\left(x+5\right)\)
\(C_2:\left[\left(3x+1\right)-2\left(x-2\right)\right]\left[\left(3x+1\right)+2\left(x-2\right)\right]=\left(x+5\right)\left(5x-3\right)\)
\(x^4+3x^2y^2+4y^4\)
\(x^4+4y^4-2xy^3+2xy^3+2x^2y^2+2x^2y^2-x^2y^2\)
\(+x^3y-x^3y\)
\(=\left(4y^4-2xy^3+2x^2y^2\right)+\left(2xy^3-x^2y^2+x^3y\right)\)
\(+\left(2x^2y^2-x^3y+x^4\right)\)
\(=2y^2\left(2y^2-xy+x^2\right)+xy\left(2y^2-xy+x^2\right)\)
\(+x^2\left(2y^2-xy+x^2\right)\)
\(=\left(2y^2+xy+x^2\right)\left(2y^2-xy+x^2\right)\)
\(x^3+3x^2-4\)
\(=x^3+4x^2+4x-x^2-4x-4\)
\(=x\left(x^2+4x+4\right)-\left(x^2+4x+4\right)\)
\(=\left(x-1\right)\left(x^2+4x+4\right)\)
\(=\left(x-1\right)\left(x+2\right)^2\)
x6+3x4y2-8x3y3+3x2y4+y6= x6+3x4y2+3x2y4+y6-8x3y3=(x2+y2)3-(2xy)3
= (x2+y2-2xy)[(x2+y2)2+2xy(x2+y2)+(2xy)2]= (x-y)2(x4+6x2y2+y4+2x3y+2xy3)
(x2+y2-5)2-4x2y2-16xy-16=(x2+y2-5)2-(4x2y2+16xy+16)=(x2+y2-5)2-(2xy+4)2
=(x2+y2-5+2xy+4)(x2+y2-5-2xy-4)=(x2+2xy+y2-1)(x2-2xy+y2-9)=[(x+y)2-1][(x-y)2-32]=(x+y-1)(x+y+1)(x-y-3)(x-y+3)
x4+324=x4+36x2+324-36x2=(x2+18)2-(6x)2=(x2+18-6x)(x2+18+6x)
\(x^2-3x-4=x^2+x-4x-4=x\left(x+1\right)-4\left(x+1\right)=\left(x-4\right)\left(x+1\right)\)
`x^2 - 3x - 4`
`<=> x(x - 3)-4`