K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\left(x^2-1+x\right)\left(x^2-1+3x\right)+x^2\)

Đặt \(a=x^2+2x-1\)

Phương trình trở thành \(\left(a-x\right)\left(a+x\right)+x^2\)

                                     \(=a^2-x^2+x^2\)

                                       \(=a^2=(x^2+2x-1)^2\)

31 tháng 10 2020

Đặt \(x^2+3x+1=t\)

\(\Rightarrow\left(x^2+3x+1\right)\left(x^2+3x+2\right)-6=t.\left(t+1\right)-6\)

\(=t^2+t-6=\left(t^2-2t\right)+\left(3t-6\right)\)

\(=t\left(t-2\right)+3\left(t-2\right)=\left(t-2\right)\left(t+3\right)\)

\(=\left(x^2+3x+1-2\right)\left(x^2+3x+1+3\right)\)

\(=\left(x^2+3x-1\right)\left(x^2+3x+4\right)\)

31 tháng 10 2020

\(A=\left(x^2+3x+1\right)\left(x^2+3x+2\right)-6\)

Đặt \(x^2+3x+1=a\)ta có :

\(a\left(a+1\right)-6\)

\(=a^2+a-6\)

\(=a^2+6a-a-6\)

\(=\left(a^2+6a\right)-\left(a+6\right)\)

\(=a\left(a+6\right)-\left(a+6\right)\)

\(=\left(a+6\right)\left(a-1\right)\)

Thay \(a=x^2+3x+1\)vào A ta có :

\(A=\left(x^2+3x+1+6\right)\left(x^2+3x+1-1\right)\)

\(=\left(x^2+3x+7\right)\left(x^2+3x\right)\)

\(\left(x^2+3x+1\right)\left(x^2+3x+2\right)-6\)

Đặt \(\left(x^2+3x+1\right)=a\), ta được:

\(a\left(a+1\right)-6\)\(=a^2+a-6\)\(=\left(a^2+3a\right)-\left(2a+6\right)\)\(=a\left(a+3\right)-2\left(a+3\right)\)

\(=\left(a+3\right)\left(a-2\right)\)

Thay \(a=\left(x^2+3x+1\right)\), ta được:

\(=\left(x^2+3x+1+3\right)\left(x^2+3x+1-2\right)\)

\(=\left(x^2+3x+4\right)\left(x^2+3x-1\right)\)

26 tháng 8 2015

 

(x^2+3x+2)(x^2+7x+12)+1

=(x2+x+2x+2)(x2+3x+4x+12)+1

=[x.(x+1)+2.(x+1)][x.(x+3)+4.(x+3)]+1

=(x+1)(x+2)(x+3)(x+4)+1

=[(x+1)(x+4)][(x+2)(x+3)]+1

=(x2+5x+4)(x2+5x+6)+1

=(x2+5x+4)[(x2+5x+4)+2]+1

=(x2+5x+4)2+2(x2+5x+4)+1

=(x2+5x+4+1)2

=(x2+5x+5)2

23 tháng 7 2016

\(\left(3x-1\right)^2-\left(x+1\right)^2=\left(3x-1-x-1\right)\left(3x-1+x+1\right)=8x\left(x-1\right)\)

23 tháng 7 2016

=(3x+1-x-1)(3x +1 +x+1)

=2x(4x +2)

=4x(2x+1)

18 tháng 8 2019

     \(\left(x^2+3x+1\right)^2-1^2\)

     \(\left(x^2+3x\right)\left(x^2+3x+2\right)\)

     \(\left(x^2+3x\right)\left(x^2+x+2x+2\right)\)

    \(\left(x^2+3x\right)\left[x\left(x+1\right)+2\left(x+1\right)\right]\)

    \(\left(x^2+3x\right)\left(x+1\right)\left(x+2\right)\)

10 tháng 11 2015

Đặt \(x^2-3x-1=a\), ta có:

\(a^2-12a+27=a^2-9a-3a+27=a\left(a-9\right)-3\left(a-9\right)=\left(a-9\right)\left(a-3\right)\)

\(=\left(x^2-3x-1-9\right)\left(x^2-3x-1-3\right)=\left(x^2-3x-10\right)\left(x^2-3x-4\right)\)

Mà \(x^2-3x-10=x^2-5x+2x-10=x\left(x-5\right)+2\left(x-5\right)=\left(x-5\right)\left(x+1\right)\)

và \(x^2-3x-4=x^2+x-4x-4=x\left(x+1\right)-4\left(x+1\right)=\left(x+1\right)\left(x-4\right)\)

\(\Rightarrow\left(x^2-3x-1\right)^2-12\left(x^2-3x-1\right)+27=\left(x-5\right)\left(x-4\right)\left(x+1\right)\left(x+2\right)\)