\(\left(x^2+x+1\right)\left(x^2+3x+1\right)+x^2\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2019

\(\left(x^2+x+1\right)\left(x^2+3x+1\right)+x^2\)

\(=x^4+x^3+x^2+3x^3+3x^2+3x+x^2+x+1+x^2\)

\(=x^4+4x^3+6x^2+4x+1\)

\(=\left(x+1\right)^4\)

18 tháng 10 2019

      (x + 2y - 3)2  - 4(x + 2y - 3) + 4

=   (x + 2y - 3)2  - 2. 2. (x + 2y - 3)  +  22   (hằng đẳng thức số 2, bình phương  của một hiệu)

=  ( x + 2y - 3 - 2)2

= ( x + 2y - 5)2

Câu a :

\(\left(x-5\right)^2+\left(x-5\right)\left(x+5\right)-\left(5-x\right)\left(2x+1\right)\)

\(=x^2-10x+25+x^2-25-10x-5+2x^2+x\)

\(=4x^2-19x-5\)

Câu b :

\(\left(3x-2\right)\left(4x-3\right)-\left(2-3x\right)\left(x-1\right)-2\left(3x-2\right)\left(x+1\right)\)

\(=12x^2-9x-8x+6-2x+2+3x^2-3x-6x^2-6x+4x+4\)

\(=9x^2-24x+2\)

28 tháng 7 2017

(1-x^2)^2-4x(1-x^2)

=(1-x^2)(1-x^2-4x)

=(1-x^2)(1-x)^2

8 tháng 9 2017

\(\left(1-x^2\right)-4x\left(1-x^2\right)\)

\(=\left(1-x^2\right)\left(1-x^2-4x\right)\)

\(=\left(1-x^2\right)\left(1-x\right)^2\)

27 tháng 10 2018

c) Đặt \(A=\left(x^2+3x+1\right)\left(x^2+3x+2\right)-6\)

Đặt \(x^2+3x+1,5=a\)

\(\Rightarrow A=\left(a-0,5\right)\left(a+0,5\right)-6\)

\(\Rightarrow A=a^2-0,25-6\)

\(\Rightarrow A=a^2-\frac{25}{4}\)

\(\Rightarrow A=\left(a-\frac{5}{2}\right)\left(a+\frac{5}{2}\right)\)

Thay \(a=x^2+3x+0,5\)vào A ta có :

\(A=\left(x^2+3x+0,5-\frac{5}{2}\right)\left(x^2+3x+0,5+\frac{5}{2}\right)\)

\(A=\left(x^2+3x-2\right)\left(x^2+3x+3\right)\)

27 tháng 10 2018

c, Đặt \(x^2+3x+2=a\)

Ta có : \(\left(a-1\right)a-6=a^2-a-6=\left(a^2-3a\right)+\left(2a-6\right)\)

                                                                       \(=a\left(a-3\right)+2\left(a-3\right)\)

                                                                       \(=\left(a+2\right)\left(a-3\right)\)

                                                                        \(=\left(x^2+3x+4\right)\left(x^2+3x-1\right)\)

Câu d làm tương tự .

Gợi ý : (x+3)(x+5) = x2 + 8x + 15 

đặt bằng a rồi giải tiếp

2 tháng 8 2016

a)(x+y)2-(x-y)2

=(x+y-x+y)(x+y+x-y)

=2y.2x=4xy

b)(3x+1)2-(x+1)2

=(3x+1-x-1)(3x+1+x+1)

=2x.(4x+2)

=4x(2x+1)

c) x3+y3+z3-3xyz

= (x+y)3- 3xy(x+y) +z3-3xyz

=(x+y+z)( x2+2xy+y2-xz-yz+z2)-3xy(x+y+z)

=(x+y+z)(x2+y2+z2-xy-xz-yz)

4 tháng 8 2016

Phân tích đa thức sau thành nhân tử :

a) \(\left(a+b+c\right)^3-a^3-b^3-c^3\)

b) \(x^3+y^3+z^3-3xyz\)

15 tháng 9 2017

a, \(=x^5+x^4+x^3-x^4-x^3-x^2+x^2+x+1\)

      \(=x^3\left(x^2+x+1\right)-x^2\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

       \(=\left(x^2+x+1\right)\left(x^3-x^2+1\right)\)

8 tháng 10 2019

\(9\left(x+1\right)^2-\left(3x-2\right)^2\)

\(=9\left(x^2+2x+1\right)-\left(9x^2-12x+4\right)\)

\(=9x^2+18x+9-9x^2+12x-4\)

\(=30x+5\)

\(=5\left(6x+1\right)\)

8 tháng 10 2019

\(9\left(x+1\right)^2-\left(3x-2\right)^2\)

\(=\left[3\left(x+1\right)+3x-2\right]\left[3\left(x+1\right)-3x+2\right]\)

\(=\left(3x+3+3x-2\right)\left(3x+3-3x+2\right)\)

\(=5\left(6x+1\right)\)